| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfa1w | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2142 in nfa1 2152 with a substitution hypothesis. (Contributed by SN, 2-Sep-2025.) |
| Ref | Expression |
|---|---|
| nfa1w.x | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| nfa1w | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1w.x | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvalvw 2036 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| 3 | nfv 1914 | . 2 ⊢ Ⅎ𝑥∀𝑦𝜓 | |
| 4 | 2, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: eu6w 42636 |
| Copyright terms: Public domain | W3C validator |