Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1w Structured version   Visualization version   GIF version

Theorem nfa1w 42632
Description: Replace ax-10 2141 in nfa1 2152 with a substitution hypothesis. (Contributed by SN, 2-Sep-2025.)
Hypothesis
Ref Expression
nfa1w.x (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nfa1w 𝑥𝑥𝜑
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nfa1w
StepHypRef Expression
1 nfa1w.x . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvalvw 2035 . 2 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
3 nfv 1913 . 2 𝑥𝑦𝜓
42, 3nfxfr 1851 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by:  eu6w  42633
  Copyright terms: Public domain W3C validator