Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1w Structured version   Visualization version   GIF version

Theorem nfa1w 42235
Description: Replace ax-10 2129 in nfa1 2140 with a substitution hypothesis. (Contributed by SN, 7-Jun-2025.)
Hypothesis
Ref Expression
nfa1w.x (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nfa1w 𝑥𝑥𝜑
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nfa1w
StepHypRef Expression
1 alex 1820 . 2 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
2 exim 1828 . . . . . 6 (∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑) → (∃𝑥𝑥 ¬ 𝜑 → ∃𝑥𝑥𝑥 ¬ 𝜑))
3 df-ex 1774 . . . . . . 7 (∃𝑥𝑥𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝑥 ¬ 𝜑)
4 nfa1w.x . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑𝜓))
54notbid 317 . . . . . . . . . . 11 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
65cbvexvw 2032 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 ↔ ∃𝑦 ¬ 𝜓)
76a1i 11 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑥 ¬ 𝜑 ↔ ∃𝑦 ¬ 𝜓))
87hbn1w 2041 . . . . . . . 8 (¬ ∀𝑥𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝑥 ¬ 𝜑)
98con1i 147 . . . . . . 7 (¬ ∀𝑥 ¬ ∀𝑥𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
103, 9sylbi 216 . . . . . 6 (∃𝑥𝑥𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
112, 10syl6 35 . . . . 5 (∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑) → (∃𝑥𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑))
1211nfd 1784 . . . 4 (∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑) → Ⅎ𝑥𝑥 ¬ 𝜑)
135hbe1w 2043 . . . 4 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
1412, 13mpg 1791 . . 3 𝑥𝑥 ¬ 𝜑
1514nfn 1852 . 2 𝑥 ¬ ∃𝑥 ¬ 𝜑
161, 15nfxfr 1847 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778
This theorem is referenced by:  eu6w  42236
  Copyright terms: Public domain W3C validator