Proof of Theorem nfa1w
Step | Hyp | Ref
| Expression |
1 | | alex 1820 |
. 2
⊢
(∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
2 | | exim 1828 |
. . . . . 6
⊢
(∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) → (∃𝑥∃𝑥 ¬ 𝜑 → ∃𝑥∀𝑥∃𝑥 ¬ 𝜑)) |
3 | | df-ex 1774 |
. . . . . . 7
⊢
(∃𝑥∀𝑥∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥∃𝑥 ¬ 𝜑) |
4 | | nfa1w.x |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
5 | 4 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
6 | 5 | cbvexvw 2032 |
. . . . . . . . . 10
⊢
(∃𝑥 ¬
𝜑 ↔ ∃𝑦 ¬ 𝜓) |
7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑥 ¬ 𝜑 ↔ ∃𝑦 ¬ 𝜓)) |
8 | 7 | hbn1w 2041 |
. . . . . . . 8
⊢ (¬
∀𝑥∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥∃𝑥 ¬ 𝜑) |
9 | 8 | con1i 147 |
. . . . . . 7
⊢ (¬
∀𝑥 ¬
∀𝑥∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
10 | 3, 9 | sylbi 216 |
. . . . . 6
⊢
(∃𝑥∀𝑥∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
11 | 2, 10 | syl6 35 |
. . . . 5
⊢
(∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) → (∃𝑥∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑)) |
12 | 11 | nfd 1784 |
. . . 4
⊢
(∀𝑥(∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) → Ⅎ𝑥∃𝑥 ¬ 𝜑) |
13 | 5 | hbe1w 2043 |
. . . 4
⊢
(∃𝑥 ¬
𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
14 | 12, 13 | mpg 1791 |
. . 3
⊢
Ⅎ𝑥∃𝑥 ¬ 𝜑 |
15 | 14 | nfn 1852 |
. 2
⊢
Ⅎ𝑥 ¬
∃𝑥 ¬ 𝜑 |
16 | 1, 15 | nfxfr 1847 |
1
⊢
Ⅎ𝑥∀𝑥𝜑 |