Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu6w Structured version   Visualization version   GIF version

Theorem eu6w 42236
Description: Replace ax-10 2129, ax-12 2166 in eu6 2562 with substitution hypotheses. (Contributed by SN, 27-May-2025.)
Hypotheses
Ref Expression
eu6w.x (𝑥 = 𝑧 → (𝜑𝜓))
eu6w.y (𝑥 = 𝑦 → (𝜑𝜃))
Assertion
Ref Expression
eu6w (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜓,𝑥   𝜃,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜃(𝑦,𝑧)

Proof of Theorem eu6w
StepHypRef Expression
1 alnex 1775 . . . . . . . 8 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 pm2.21 123 . . . . . . . . 9 𝜑 → (𝜑𝑥 = 𝑦))
32alimi 1805 . . . . . . . 8 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
41, 3sylbir 234 . . . . . . 7 (¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
5 equequ2 2021 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
65imbi2d 339 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
76albidv 1915 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
8719.8aw 2045 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
94, 8syl 17 . . . . . 6 (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
10 biimp 214 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
1110alimi 1805 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
1211eximi 1829 . . . . . 6 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
139, 12ja 186 . . . . 5 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
14 eu6w.x . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝜑𝜓))
15 equequ1 2020 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1614, 15imbi12d 343 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜓𝑧 = 𝑦)))
1716nfa1w 42235 . . . . . . . . . 10 𝑥𝑥(𝜑𝑥 = 𝑦)
1814, 15bibi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜓𝑧 = 𝑦)))
1918nfa1w 42235 . . . . . . . . . 10 𝑥𝑥(𝜑𝑥 = 𝑦)
2017, 19nfim 1891 . . . . . . . . 9 𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
21 19.38b 1835 . . . . . . . . . 10 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))) ↔ ∀𝑥(𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))))
2216cbvalvw 2031 . . . . . . . . . . . . . . 15 (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑧(𝜓𝑧 = 𝑦))
2318cbvalvw 2031 . . . . . . . . . . . . . . 15 (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑧(𝜓𝑧 = 𝑦))
2422, 23imbi12i 349 . . . . . . . . . . . . . 14 ((∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) ↔ (∀𝑧(𝜓𝑧 = 𝑦) → ∀𝑧(𝜓𝑧 = 𝑦)))
2524a1i 11 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) ↔ (∀𝑧(𝜓𝑧 = 𝑦) → ∀𝑧(𝜓𝑧 = 𝑦))))
2625spw 2029 . . . . . . . . . . . 12 (∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
272519.8aw 2045 . . . . . . . . . . . . 13 ((∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
28 id 22 . . . . . . . . . . . . . 14 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2928nfrd 1785 . . . . . . . . . . . . 13 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → (∃𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))))
3027, 29syl5 34 . . . . . . . . . . . 12 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ((∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))))
3126, 30impbid2 225 . . . . . . . . . . 11 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → (∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) ↔ (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))))
3231imbi2d 339 . . . . . . . . . 10 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))))
3321, 32bitr3d 280 . . . . . . . . 9 (Ⅎ𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)) → (∀𝑥(𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))))
3420, 33ax-mp 5 . . . . . . . 8 (∀𝑥(𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))))
3516spw 2029 . . . . . . . . . . 11 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
36 id 22 . . . . . . . . . . . 12 (𝜑𝜑)
37 eu6w.y . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝜑𝜃))
3837ax12wlem 2120 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3938com12 32 . . . . . . . . . . . 12 (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦𝜑)))
4036, 39embantd 59 . . . . . . . . . . 11 (𝜑 → ((𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
4135, 40syl5 34 . . . . . . . . . 10 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
4241ancld 549 . . . . . . . . 9 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑))))
43 albiim 1884 . . . . . . . . 9 (∀𝑥(𝜑𝑥 = 𝑦) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
4442, 43imbitrrdi 251 . . . . . . . 8 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
4534, 44mpgbi 1792 . . . . . . 7 (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
4645eximdv 1912 . . . . . 6 (∃𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
4746com12 32 . . . . 5 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
4813, 47impbii 208 . . . 4 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
4948anbi2i 621 . . 3 ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
50 abai 825 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))))
51 eu3v 2558 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
5249, 50, 513bitr4ri 303 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
53 abai 825 . . 3 ((∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
54 ancom 459 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑))
55 biimpr 219 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
5655alimi 1805 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑))
5756eximi 1829 . . . . 5 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
58 exsbim 1997 . . . . 5 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
5957, 58syl 17 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)
6059biantru 528 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
6153, 54, 603bitr4i 302 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6252, 61bitri 274 1 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531  wex 1773  wnf 1777  ∃!weu 2556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-mo 2528  df-eu 2557
This theorem is referenced by:  euabsn2w  42239
  Copyright terms: Public domain W3C validator