Proof of Theorem eu6w
Step | Hyp | Ref
| Expression |
1 | | alnex 1775 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) |
2 | | pm2.21 123 |
. . . . . . . . 9
⊢ (¬
𝜑 → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1805 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 1, 3 | sylbir 234 |
. . . . . . 7
⊢ (¬
∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | | equequ2 2021 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
6 | 5 | imbi2d 339 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) |
7 | 6 | albidv 1915 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
8 | 7 | 19.8aw 2045 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
10 | | biimp 214 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
11 | 10 | alimi 1805 |
. . . . . . 7
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
12 | 11 | eximi 1829 |
. . . . . 6
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
13 | 9, 12 | ja 186 |
. . . . 5
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
14 | | eu6w.x |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
15 | | equequ1 2020 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
16 | 14, 15 | imbi12d 343 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑧 = 𝑦))) |
17 | 16 | nfa1w 42235 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) |
18 | 14, 15 | bibi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑧 = 𝑦))) |
19 | 18 | nfa1w 42235 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
20 | 17, 19 | nfim 1891 |
. . . . . . . . 9
⊢
Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
21 | | 19.38b 1835 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ ∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
22 | 16 | cbvalvw 2031 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 → 𝑧 = 𝑦)) |
23 | 18 | cbvalvw 2031 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)) |
24 | 22, 23 | imbi12i 349 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦))) |
25 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)))) |
26 | 25 | spw 2029 |
. . . . . . . . . . . 12
⊢
(∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
27 | 25 | 19.8aw 2045 |
. . . . . . . . . . . . 13
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
28 | | id 22 |
. . . . . . . . . . . . . 14
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
29 | 28 | nfrd 1785 |
. . . . . . . . . . . . 13
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
30 | 27, 29 | syl5 34 |
. . . . . . . . . . . 12
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
31 | 26, 30 | impbid2 225 |
. . . . . . . . . . 11
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
32 | 31 | imbi2d 339 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
33 | 21, 32 | bitr3d 280 |
. . . . . . . . 9
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
34 | 20, 33 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
35 | 16 | spw 2029 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
36 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝜑) |
37 | | eu6w.y |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) |
38 | 37 | ax12wlem 2120 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
39 | 38 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
40 | 36, 39 | embantd 59 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
41 | 35, 40 | syl5 34 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
42 | 41 | ancld 549 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
43 | | albiim 1884 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
44 | 42, 43 | imbitrrdi 251 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
45 | 34, 44 | mpgbi 1792 |
. . . . . . 7
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
46 | 45 | eximdv 1912 |
. . . . . 6
⊢
(∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
47 | 46 | com12 32 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
48 | 13, 47 | impbii 208 |
. . . 4
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
49 | 48 | anbi2i 621 |
. . 3
⊢
((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
50 | | abai 825 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
51 | | eu3v 2558 |
. . 3
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
52 | 49, 50, 51 | 3bitr4ri 303 |
. 2
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
53 | | abai 825 |
. . 3
⊢
((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
54 | | ancom 459 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) |
55 | | biimpr 219 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
56 | 55 | alimi 1805 |
. . . . . 6
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
57 | 56 | eximi 1829 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
58 | | exsbim 1997 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) |
59 | 57, 58 | syl 17 |
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
60 | 59 | biantru 528 |
. . 3
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
61 | 53, 54, 60 | 3bitr4i 302 |
. 2
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
62 | 52, 61 | bitri 274 |
1
⊢
(∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |