Proof of Theorem eu6w
| Step | Hyp | Ref
| Expression |
| 1 | | alnex 1781 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) |
| 2 | | pm2.21 123 |
. . . . . . . . 9
⊢ (¬
𝜑 → (𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alimi 1811 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 1, 3 | sylbir 235 |
. . . . . . 7
⊢ (¬
∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | | equequ2 2026 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 6 | 5 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) |
| 7 | 6 | albidv 1920 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
| 8 | 7 | 19.8aw 2051 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 10 | | biimp 215 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 11 | 10 | alimi 1811 |
. . . . . . 7
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 12 | 11 | eximi 1835 |
. . . . . 6
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 13 | 9, 12 | ja 186 |
. . . . 5
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 14 | | eu6w.x |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 15 | | equequ1 2025 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
| 16 | 14, 15 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑧 = 𝑦))) |
| 17 | 16 | nfa1w 42665 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 18 | 14, 15 | bibi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑧 = 𝑦))) |
| 19 | 18 | nfa1w 42665 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 20 | 17, 19 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 21 | | 19.38b 1841 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ ∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
| 22 | 16 | cbvalvw 2036 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 → 𝑧 = 𝑦)) |
| 23 | 18 | cbvalvw 2036 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)) |
| 24 | 22, 23 | imbi12i 350 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦))) |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)))) |
| 26 | 25 | spw 2034 |
. . . . . . . . . . . 12
⊢
(∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 27 | 25 | 19.8aw 2051 |
. . . . . . . . . . . . 13
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 28 | | id 22 |
. . . . . . . . . . . . . 14
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 29 | 28 | nfrd 1791 |
. . . . . . . . . . . . 13
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
| 30 | 27, 29 | syl5 34 |
. . . . . . . . . . . 12
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
| 31 | 26, 30 | impbid2 226 |
. . . . . . . . . . 11
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
| 32 | 31 | imbi2d 340 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
| 33 | 21, 32 | bitr3d 281 |
. . . . . . . . 9
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) |
| 34 | 20, 33 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
| 35 | 16 | spw 2034 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 36 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝜑) |
| 37 | | eu6w.y |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) |
| 38 | 37 | ax12wlem 2133 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 39 | 38 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 40 | 36, 39 | embantd 59 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 41 | 35, 40 | syl5 34 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 42 | 41 | ancld 550 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 43 | | albiim 1889 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 44 | 42, 43 | imbitrrdi 252 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 45 | 34, 44 | mpgbi 1798 |
. . . . . . 7
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 46 | 45 | eximdv 1917 |
. . . . . 6
⊢
(∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 47 | 46 | com12 32 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 48 | 13, 47 | impbii 209 |
. . . 4
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 49 | 48 | anbi2i 623 |
. . 3
⊢
((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 50 | | abai 826 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) |
| 51 | | eu3v 2570 |
. . 3
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 52 | 49, 50, 51 | 3bitr4ri 304 |
. 2
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 53 | | abai 826 |
. . 3
⊢
((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
| 54 | | ancom 460 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) |
| 55 | | biimpr 220 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
| 56 | 55 | alimi 1811 |
. . . . . 6
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 57 | 56 | eximi 1835 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 58 | | exsbim 2002 |
. . . . 5
⊢
(∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) |
| 59 | 57, 58 | syl 17 |
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
| 60 | 59 | biantru 529 |
. . 3
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
| 61 | 53, 54, 60 | 3bitr4i 303 |
. 2
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 62 | 52, 61 | bitri 275 |
1
⊢
(∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |