Proof of Theorem eu6w
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | alnex 1780 | . . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) | 
| 2 |  | pm2.21 123 | . . . . . . . . 9
⊢ (¬
𝜑 → (𝜑 → 𝑥 = 𝑦)) | 
| 3 | 2 | alimi 1810 | . . . . . . . 8
⊢
(∀𝑥 ¬
𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 4 | 1, 3 | sylbir 235 | . . . . . . 7
⊢ (¬
∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 5 |  | equequ2 2024 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | 
| 6 | 5 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) | 
| 7 | 6 | albidv 1919 | . . . . . . . 8
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) | 
| 8 | 7 | 19.8aw 2049 | . . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 9 | 4, 8 | syl 17 | . . . . . 6
⊢ (¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 10 |  | biimp 215 | . . . . . . . 8
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | 
| 11 | 10 | alimi 1810 | . . . . . . 7
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 12 | 11 | eximi 1834 | . . . . . 6
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 13 | 9, 12 | ja 186 | . . . . 5
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 14 |  | eu6w.x | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | 
| 15 |  | equequ1 2023 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | 
| 16 | 14, 15 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑧 = 𝑦))) | 
| 17 | 16 | nfa1w 42690 | . . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | 
| 18 | 14, 15 | bibi12d 345 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑧 = 𝑦))) | 
| 19 | 18 | nfa1w 42690 | . . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | 
| 20 | 17, 19 | nfim 1895 | . . . . . . . . 9
⊢
Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 21 |  | 19.38b 1840 | . . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ ∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) | 
| 22 | 16 | cbvalvw 2034 | . . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 → 𝑧 = 𝑦)) | 
| 23 | 18 | cbvalvw 2034 | . . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)) | 
| 24 | 22, 23 | imbi12i 350 | . . . . . . . . . . . . . 14
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦))) | 
| 25 | 24 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑧(𝜓 → 𝑧 = 𝑦) → ∀𝑧(𝜓 ↔ 𝑧 = 𝑦)))) | 
| 26 | 25 | spw 2032 | . . . . . . . . . . . 12
⊢
(∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 27 | 25 | 19.8aw 2049 | . . . . . . . . . . . . 13
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 28 |  | id 22 | . . . . . . . . . . . . . 14
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 29 | 28 | nfrd 1790 | . . . . . . . . . . . . 13
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∃𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | 
| 30 | 27, 29 | syl5 34 | . . . . . . . . . . . 12
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | 
| 31 | 26, 30 | impbid2 226 | . . . . . . . . . . 11
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | 
| 32 | 31 | imbi2d 340 | . . . . . . . . . 10
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ((∃𝑥𝜑 → ∀𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) | 
| 33 | 21, 32 | bitr3d 281 | . . . . . . . . 9
⊢
(Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → (∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))))) | 
| 34 | 20, 33 | ax-mp 5 | . . . . . . . 8
⊢
(∀𝑥(𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | 
| 35 | 16 | spw 2032 | . . . . . . . . . . 11
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | 
| 36 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝜑) | 
| 37 |  | eu6w.y | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | 
| 38 | 37 | ax12wlem 2131 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 39 | 38 | com12 32 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 40 | 36, 39 | embantd 59 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 41 | 35, 40 | syl5 34 | . . . . . . . . . 10
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 42 | 41 | ancld 550 | . . . . . . . . 9
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 43 |  | albiim 1888 | . . . . . . . . 9
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 44 | 42, 43 | imbitrrdi 252 | . . . . . . . 8
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 45 | 34, 44 | mpgbi 1797 | . . . . . . 7
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 46 | 45 | eximdv 1916 | . . . . . 6
⊢
(∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 47 | 46 | com12 32 | . . . . 5
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 48 | 13, 47 | impbii 209 | . . . 4
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 49 | 48 | anbi2i 623 | . . 3
⊢
((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 50 |  | abai 826 | . . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | 
| 51 |  | eu3v 2569 | . . 3
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 52 | 49, 50, 51 | 3bitr4ri 304 | . 2
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 53 |  | abai 826 | . . 3
⊢
((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) | 
| 54 |  | ancom 460 | . . 3
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) | 
| 55 |  | biimpr 220 | . . . . . . 7
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | 
| 56 | 55 | alimi 1810 | . . . . . 6
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 57 | 56 | eximi 1834 | . . . . 5
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 58 |  | exsbim 2000 | . . . . 5
⊢
(∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | 
| 59 | 57, 58 | syl 17 | . . . 4
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) | 
| 60 | 59 | biantru 529 | . . 3
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) | 
| 61 | 53, 54, 60 | 3bitr4i 303 | . 2
⊢
((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 62 | 52, 61 | bitri 275 | 1
⊢
(∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |