Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcjust | Structured version Visualization version GIF version |
Description: Justification theorem for df-nfc 2891. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfcjust | ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2823 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | 1 | nfbidv 1929 | . 2 ⊢ (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑧 ∈ 𝐴)) |
3 | 2 | cbvalvw 2043 | 1 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 Ⅎwnf 1790 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 df-clel 2818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |