MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcjust Structured version   Visualization version   GIF version

Theorem nfcjust 2887
Description: Justification theorem for df-nfc 2888. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
nfcjust (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcjust
StepHypRef Expression
1 eleq1w 2821 . . 3 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
21nfbidv 1926 . 2 (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑧𝐴))
32cbvalvw 2040 1 (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wnf 1787  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator