|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfcjust | Structured version Visualization version GIF version | ||
| Description: Justification theorem for df-nfc 2891. (Contributed by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfcjust | ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2823 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | 1 | nfbidv 1921 | . 2 ⊢ (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑧 ∈ 𝐴)) | 
| 3 | 2 | cbvalvw 2034 | 1 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 ∈ wcel 2107 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-clel 2815 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |