| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbidv | Structured version Visualization version GIF version | ||
| Description: An equality theorem for nonfreeness. See nfbidf 2224 for a version without disjoint variable condition but requiring more axioms. (Contributed by Mario Carneiro, 4-Oct-2016.) Remove dependency on ax-6 1967, ax-7 2007, ax-12 2177 by adapting proof of nfbidf 2224. (Revised by BJ, 25-Sep-2022.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| nfbidv | ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1921 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| 3 | 1 | albidv 1920 | . . 3 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ (∃𝑥𝜒 → ∀𝑥𝜒))) |
| 5 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 6 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜒 ↔ (∃𝑥𝜒 → ∀𝑥𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfcjust 2884 nfcr 2888 bj-drnf2v 36828 |
| Copyright terms: Public domain | W3C validator |