MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbidv Structured version   Visualization version   GIF version

Theorem nfbidv 2017
Description: An equality theorem for nonfreeness. See nfbidf 2257 for a version without disjoint variable condition but requiring more axioms. (Contributed by Mario Carneiro, 4-Oct-2016.) Remove dependency on ax-6 2070, ax-7 2105, ax-12 2211 by adapting proof of nfbidf 2257. (Revised by BJ, 25-Sep-2022.)
Hypothesis
Ref Expression
albidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
nfbidv (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem nfbidv
StepHypRef Expression
1 albidv.1 . . . 4 (𝜑 → (𝜓𝜒))
21exbidv 2016 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
31albidv 2015 . . 3 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
42, 3imbi12d 335 . 2 (𝜑 → ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ (∃𝑥𝜒 → ∀𝑥𝜒)))
5 df-nf 1879 . 2 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
6 df-nf 1879 . 2 (Ⅎ𝑥𝜒 ↔ (∃𝑥𝜒 → ∀𝑥𝜒))
74, 5, 63bitr4g 305 1 (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wal 1650  wex 1874  wnf 1878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005
This theorem depends on definitions:  df-bi 198  df-ex 1875  df-nf 1879
This theorem is referenced by:  nfcjust  2895  bj-drnf2v  33117
  Copyright terms: Public domain W3C validator