MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2327
Description: Deduction form of nfal 2322. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2326 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1791 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2213 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2158 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1790 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfexd  2328  dvelimhw  2343  nfald2  2443  nfmodv  2552  nfeqd  2902  nfabdw  2913  nfraldw  3281  nfiotadw  6455  nfixpw  8866  axrepndlem1  10521  axrepndlem2  10522  axunnd  10525  axpowndlem2  10527  axpowndlem4  10529  axregndlem2  10532  axinfndlem1  10534  axinfnd  10535  axacndlem4  10539  axacndlem5  10540  axacnd  10541  axsepg2  35045  axsepg2ALT  35046  axnulg  35055  bj-dvelimdv  36812  wl-mo2df  37531  wl-eudf  37533  wl-mo2t  37536  nfintd  49635
  Copyright terms: Public domain W3C validator