![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version |
Description: Deduction form of nfal 2327. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.12 2331 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1789 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
5 | 2, 4 | alimd 2213 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
6 | ax-11 2158 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
8 | 7 | nfd 1788 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfexd 2333 dvelimhw 2351 nfald2 2453 nfmodv 2562 nfeqd 2919 nfabdw 2932 nfraldw 3315 nfraldwOLD 3328 nfiotadw 6528 nfixpw 8974 axrepndlem1 10661 axrepndlem2 10662 axunnd 10665 axpowndlem2 10667 axpowndlem4 10669 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 axsepg2 35058 axsepg2ALT 35059 axnulg 35068 bj-dvelimdv 36817 wl-mo2df 37524 wl-eudf 37526 wl-mo2t 37529 nfintd 48765 |
Copyright terms: Public domain | W3C validator |