Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version |
Description: Deduction form of nfal 2316. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.12 2320 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1792 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
5 | 2, 4 | alimd 2204 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
6 | ax-11 2153 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
8 | 7 | nfd 1791 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: nfexd 2322 dvelimhw 2342 nfald2 2444 nfmodv 2558 nfeqd 2915 nfabdw 2928 nfraldw 3289 nfraldwOLD 3299 nfiotadw 6420 nfixpw 8752 axrepndlem1 10421 axrepndlem2 10422 axunnd 10425 axpowndlem2 10427 axpowndlem4 10429 axregndlem2 10432 axinfndlem1 10434 axinfnd 10435 axacndlem4 10439 axacndlem5 10440 axacnd 10441 bj-dvelimdv 35092 wl-mo2df 35781 wl-eudf 35783 wl-mo2t 35786 nfintd 46631 |
Copyright terms: Public domain | W3C validator |