| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version | ||
| Description: Deduction form of nfal 2322. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.12 2326 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
| 2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | 2, 4 | alimd 2213 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
| 6 | ax-11 2158 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
| 7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| 8 | 7 | nfd 1790 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfexd 2328 dvelimhw 2343 nfald2 2443 nfmodv 2552 nfeqd 2902 nfabdw 2913 nfraldw 3283 nfiotadw 6467 nfixpw 8889 axrepndlem1 10545 axrepndlem2 10546 axunnd 10549 axpowndlem2 10551 axpowndlem4 10553 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 axsepg2 35072 axsepg2ALT 35073 axnulg 35082 bj-dvelimdv 36839 wl-mo2df 37558 wl-eudf 37560 wl-mo2t 37563 nfintd 49662 |
| Copyright terms: Public domain | W3C validator |