MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2321
Description: Deduction form of nfal 2316. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2320 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1792 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2204 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2153 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1791 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfexd  2322  dvelimhw  2342  nfald2  2444  nfmodv  2558  nfeqd  2915  nfabdw  2928  nfraldw  3289  nfraldwOLD  3299  nfiotadw  6420  nfixpw  8752  axrepndlem1  10421  axrepndlem2  10422  axunnd  10425  axpowndlem2  10427  axpowndlem4  10429  axregndlem2  10432  axinfndlem1  10434  axinfnd  10435  axacndlem4  10439  axacndlem5  10440  axacnd  10441  bj-dvelimdv  35092  wl-mo2df  35781  wl-eudf  35783  wl-mo2t  35786  nfintd  46631
  Copyright terms: Public domain W3C validator