Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version |
Description: Deduction form of nfal 2315. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.12 2319 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
5 | 2, 4 | alimd 2203 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
6 | ax-11 2152 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
8 | 7 | nfd 1790 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1779 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1780 df-nf 1784 |
This theorem is referenced by: nfexd 2321 dvelimhw 2341 nfald2 2443 nfmodv 2557 nfeqd 2915 nfabdw 2928 nfraldw 3289 nfraldwOLD 3290 nfiotadw 6413 nfixpw 8735 axrepndlem1 10394 axrepndlem2 10395 axunnd 10398 axpowndlem2 10400 axpowndlem4 10402 axregndlem2 10405 axinfndlem1 10407 axinfnd 10408 axacndlem4 10412 axacndlem5 10413 axacnd 10414 bj-dvelimdv 35079 wl-mo2df 35769 wl-eudf 35771 wl-mo2t 35774 nfintd 46437 |
Copyright terms: Public domain | W3C validator |