MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2327
Description: Deduction form of nfal 2322. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2326 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1791 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2213 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2158 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1790 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfexd  2328  dvelimhw  2343  nfald2  2444  nfmodv  2553  nfeqd  2903  nfabdw  2914  nfraldw  3285  nfiotadw  6470  nfixpw  8892  axrepndlem1  10552  axrepndlem2  10553  axunnd  10556  axpowndlem2  10558  axpowndlem4  10560  axregndlem2  10563  axinfndlem1  10565  axinfnd  10566  axacndlem4  10570  axacndlem5  10571  axacnd  10572  axsepg2  35079  axsepg2ALT  35080  axnulg  35089  bj-dvelimdv  36846  wl-mo2df  37565  wl-eudf  37567  wl-mo2t  37570  nfintd  49666
  Copyright terms: Public domain W3C validator