MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2325
Description: Deduction form of nfal 2320. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2324 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1797 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2208 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2157 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1796 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1785  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  nfexd  2326  dvelimhw  2346  nfald2  2446  nfmodv  2560  nfeqd  2918  nfabdw  2931  nfraldw  3148  nfraldwOLD  3149  nfiotadw  6391  nfixpw  8678  axrepndlem1  10332  axrepndlem2  10333  axunnd  10336  axpowndlem2  10338  axpowndlem4  10340  axregndlem2  10343  axinfndlem1  10345  axinfnd  10346  axacndlem4  10350  axacndlem5  10351  axacnd  10352  bj-dvelimdv  35014  wl-mo2df  35704  wl-eudf  35706  wl-mo2t  35709  nfintd  46331
  Copyright terms: Public domain W3C validator