MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2332
Description: Deduction form of nfal 2327. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2331 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1789 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2213 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2158 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1788 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfexd  2333  dvelimhw  2351  nfald2  2453  nfmodv  2562  nfeqd  2919  nfabdw  2932  nfraldw  3315  nfraldwOLD  3328  nfiotadw  6528  nfixpw  8974  axrepndlem1  10661  axrepndlem2  10662  axunnd  10665  axpowndlem2  10667  axpowndlem4  10669  axregndlem2  10672  axinfndlem1  10674  axinfnd  10675  axacndlem4  10679  axacndlem5  10680  axacnd  10681  axsepg2  35058  axsepg2ALT  35059  axnulg  35068  bj-dvelimdv  36817  wl-mo2df  37524  wl-eudf  37526  wl-mo2t  37529  nfintd  48765
  Copyright terms: Public domain W3C validator