MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfald Structured version   Visualization version   GIF version

Theorem nfald 2328
Description: Deduction form of nfal 2323. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 19.12 2327 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1791 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimd 2212 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2157 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1790 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfexd  2329  dvelimhw  2346  nfald2  2449  nfmodv  2558  nfeqd  2909  nfabdw  2920  nfraldw  3289  nfiotadw  6487  nfixpw  8930  axrepndlem1  10606  axrepndlem2  10607  axunnd  10610  axpowndlem2  10612  axpowndlem4  10614  axregndlem2  10617  axinfndlem1  10619  axinfnd  10620  axacndlem4  10624  axacndlem5  10625  axacnd  10626  axsepg2  35113  axsepg2ALT  35114  axnulg  35123  bj-dvelimdv  36869  wl-mo2df  37588  wl-eudf  37590  wl-mo2t  37593  nfintd  49537
  Copyright terms: Public domain W3C validator