| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version | ||
| Description: Deduction form of nfal 2323. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.12 2327 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
| 2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | 2, 4 | alimd 2212 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
| 6 | ax-11 2157 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
| 7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| 8 | 7 | nfd 1790 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfexd 2329 dvelimhw 2346 nfald2 2449 nfmodv 2558 nfeqd 2909 nfabdw 2920 nfraldw 3289 nfiotadw 6487 nfixpw 8930 axrepndlem1 10606 axrepndlem2 10607 axunnd 10610 axpowndlem2 10612 axpowndlem4 10614 axregndlem2 10617 axinfndlem1 10619 axinfnd 10620 axacndlem4 10624 axacndlem5 10625 axacnd 10626 axsepg2 35113 axsepg2ALT 35114 axnulg 35123 bj-dvelimdv 36869 wl-mo2df 37588 wl-eudf 37590 wl-mo2t 37593 nfintd 49537 |
| Copyright terms: Public domain | W3C validator |