| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfald | Structured version Visualization version GIF version | ||
| Description: Deduction form of nfal 2324. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.12 2328 | . . 3 ⊢ (∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | |
| 2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1792 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | 2, 4 | alimd 2215 | . . 3 ⊢ (𝜑 → (∀𝑦∃𝑥𝜓 → ∀𝑦∀𝑥𝜓)) |
| 6 | ax-11 2160 | . . 3 ⊢ (∀𝑦∀𝑥𝜓 → ∀𝑥∀𝑦𝜓) | |
| 7 | 1, 5, 6 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| 8 | 7 | nfd 1791 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfexd 2330 dvelimhw 2345 nfald2 2445 nfmodv 2554 nfeqd 2905 nfabdw 2916 nfraldw 3277 nfiotadw 6440 nfixpw 8840 axrepndlem1 10483 axrepndlem2 10484 axunnd 10487 axpowndlem2 10489 axpowndlem4 10491 axregndlem2 10494 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 axsepg2 35094 axsepg2ALT 35095 axnulg 35119 bj-dvelimdv 36895 wl-mo2df 37614 wl-eudf 37616 wl-mo2t 37619 nfintd 49784 |
| Copyright terms: Public domain | W3C validator |