Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfald Structured version   Visualization version   GIF version

Theorem bj-nfald 36621
Description: Variant of nfald 2316. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
bj-nfald.1 (𝜑 → ∀𝑦𝜑)
bj-nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
bj-nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem bj-nfald
StepHypRef Expression
1 19.12 2315 . . 3 (∃𝑥𝑦𝜓 → ∀𝑦𝑥𝜓)
2 bj-nfald.1 . . . 4 (𝜑 → ∀𝑦𝜑)
3 bj-nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1785 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
52, 4alimdh 1811 . . 3 (𝜑 → (∀𝑦𝑥𝜓 → ∀𝑦𝑥𝜓))
6 ax-11 2146 . . 3 (∀𝑦𝑥𝜓 → ∀𝑥𝑦𝜓)
71, 5, 6syl56 36 . 2 (𝜑 → (∃𝑥𝑦𝜓 → ∀𝑥𝑦𝜓))
87nfd 1784 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1774  df-nf 1778
This theorem is referenced by:  bj-nfexd  36622
  Copyright terms: Public domain W3C validator