| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfa2 | Structured version Visualization version GIF version | ||
| Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2182. (Revised by Wolf Lammen, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2164 | . 2 ⊢ (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑) | |
| 2 | nfa1 2156 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2146 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbv1h 2407 nfra2w 3269 csbie2t 3884 copsex2t 5435 fnoprabg 7475 bj-hbext 36775 bj-nfext 36777 bj-cbv1hv 36861 ax11-pm 36897 pm14.123b 44543 hbexg 44673 nfich2 47572 ich2al 47591 |
| Copyright terms: Public domain | W3C validator |