MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa2 Structured version   Visualization version   GIF version

Theorem nfa2 2172
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 18-Oct-2021.)
Assertion
Ref Expression
nfa2 𝑥𝑦𝑥𝜑

Proof of Theorem nfa2
StepHypRef Expression
1 alcom 2158 . 2 (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑)
2 nfa1 2150 . 2 𝑥𝑥𝑦𝜑
31, 2nfxfr 1856 1 𝑥𝑦𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-10 2139  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  cbv1h  2405  csbie2t  3869  copsex2t  5400  fnoprabg  7375  bj-hbext  34819  bj-nfext  34821  bj-cbv1hv  34905  ax11-pm  34942  pm14.123b  41933  hbexg  42065  nfich2  44788  ich2al  44807
  Copyright terms: Public domain W3C validator