MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa2 Structured version   Visualization version   GIF version

Theorem nfa2 2174
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2175. (Revised by Wolf Lammen, 18-Oct-2021.)
Assertion
Ref Expression
nfa2 𝑥𝑦𝑥𝜑

Proof of Theorem nfa2
StepHypRef Expression
1 alcom 2157 . 2 (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑)
2 nfa1 2149 . 2 𝑥𝑥𝑦𝜑
31, 2nfxfr 1850 1 𝑥𝑦𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-10 2139  ax-11 2155
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1777  df-nf 1781
This theorem is referenced by:  cbv1h  2408  nfra2w  3297  csbie2t  3949  copsex2t  5503  fnoprabg  7556  bj-hbext  36693  bj-nfext  36695  bj-cbv1hv  36779  ax11-pm  36815  pm14.123b  44422  hbexg  44554  nfich2  47373  ich2al  47392
  Copyright terms: Public domain W3C validator