![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfa2 | Structured version Visualization version GIF version |
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2175. (Revised by Wolf Lammen, 18-Oct-2021.) |
Ref | Expression |
---|---|
nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2157 | . 2 ⊢ (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑) | |
2 | nfa1 2149 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
3 | 1, 2 | nfxfr 1850 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-10 2139 ax-11 2155 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1777 df-nf 1781 |
This theorem is referenced by: cbv1h 2408 nfra2w 3297 csbie2t 3949 copsex2t 5503 fnoprabg 7556 bj-hbext 36693 bj-nfext 36695 bj-cbv1hv 36779 ax11-pm 36815 pm14.123b 44422 hbexg 44554 nfich2 47373 ich2al 47392 |
Copyright terms: Public domain | W3C validator |