Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfa2 | Structured version Visualization version GIF version |
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 18-Oct-2021.) |
Ref | Expression |
---|---|
nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2158 | . 2 ⊢ (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑) | |
2 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-10 2139 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbv1h 2405 csbie2t 3869 copsex2t 5400 fnoprabg 7375 bj-hbext 34819 bj-nfext 34821 bj-cbv1hv 34905 ax11-pm 34942 pm14.123b 41933 hbexg 42065 nfich2 44788 ich2al 44807 |
Copyright terms: Public domain | W3C validator |