MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa2 Structured version   Visualization version   GIF version

Theorem nfa2 2179
Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) Remove dependency on ax-12 2180. (Revised by Wolf Lammen, 18-Oct-2021.)
Assertion
Ref Expression
nfa2 𝑥𝑦𝑥𝜑

Proof of Theorem nfa2
StepHypRef Expression
1 alcom 2162 . 2 (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑)
2 nfa1 2154 . 2 𝑥𝑥𝑦𝜑
31, 2nfxfr 1854 1 𝑥𝑦𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1539  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-10 2144  ax-11 2160
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  cbv1h  2405  nfra2w  3268  csbie2t  3888  copsex2t  5432  fnoprabg  7469  bj-hbext  36743  bj-nfext  36745  bj-cbv1hv  36829  ax11-pm  36865  pm14.123b  44458  hbexg  44588  nfich2  47478  ich2al  47497
  Copyright terms: Public domain W3C validator