MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnan Structured version   Visualization version   GIF version

Theorem nfnan 1903
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by Scott Fenton, 2-Jan-2018.)
Hypotheses
Ref Expression
nfan.1 𝑥𝜑
nfan.2 𝑥𝜓
Assertion
Ref Expression
nfnan 𝑥(𝜑𝜓)

Proof of Theorem nfnan
StepHypRef Expression
1 df-nan 1487 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 nfan.1 . . . 4 𝑥𝜑
3 nfan.2 . . . 4 𝑥𝜓
42, 3nfan 1902 . . 3 𝑥(𝜑𝜓)
54nfn 1860 . 2 𝑥 ¬ (𝜑𝜓)
61, 5nfxfr 1855 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wnan 1486  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-nan 1487  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator