MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd2 Structured version   Visualization version   GIF version

Theorem nd2 10548
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd2 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)

Proof of Theorem nd2
StepHypRef Expression
1 elirrv 9556 . . 3 ¬ 𝑧𝑧
2 stdpc4 2069 . . . 4 (∀𝑦 𝑧𝑦 → [𝑧 / 𝑦]𝑧𝑦)
31nfnth 1802 . . . . 5 𝑦 𝑧𝑧
4 elequ2 2124 . . . . 5 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
53, 4sbie 2501 . . . 4 ([𝑧 / 𝑦]𝑧𝑦𝑧𝑧)
62, 5sylib 218 . . 3 (∀𝑦 𝑧𝑦𝑧𝑧)
71, 6mto 197 . 2 ¬ ∀𝑦 𝑧𝑦
8 axc11 2429 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑧𝑦 → ∀𝑦 𝑧𝑦))
97, 8mtoi 199 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-13 2371  ax-ext 2702  ax-sep 5254  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  axrepnd  10554  axpownd  10561  axinfndlem1  10565  axacndlem4  10570
  Copyright terms: Public domain W3C validator