MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd2 Structured version   Visualization version   GIF version

Theorem nd2 10587
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2369. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd2 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)

Proof of Theorem nd2
StepHypRef Expression
1 elirrv 9595 . . 3 ¬ 𝑧𝑧
2 stdpc4 2069 . . . 4 (∀𝑦 𝑧𝑦 → [𝑧 / 𝑦]𝑧𝑦)
31nfnth 1802 . . . . 5 𝑦 𝑧𝑧
4 elequ2 2119 . . . . 5 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
53, 4sbie 2499 . . . 4 ([𝑧 / 𝑦]𝑧𝑦𝑧𝑧)
62, 5sylib 217 . . 3 (∀𝑦 𝑧𝑦𝑧𝑧)
71, 6mto 196 . 2 ¬ ∀𝑦 𝑧𝑦
8 axc11 2427 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑧𝑦 → ∀𝑦 𝑧𝑦))
97, 8mtoi 198 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-13 2369  ax-ext 2701  ax-sep 5300  ax-pr 5428  ax-reg 9591
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-v 3474  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  axrepnd  10593  axpownd  10600  axinfndlem1  10604  axacndlem4  10609
  Copyright terms: Public domain W3C validator