MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd2 Structured version   Visualization version   GIF version

Theorem nd2 9745
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 1-Jan-2002.)
Assertion
Ref Expression
nd2 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)

Proof of Theorem nd2
StepHypRef Expression
1 elirrv 8790 . . 3 ¬ 𝑧𝑧
2 stdpc4 2428 . . . 4 (∀𝑦 𝑧𝑦 → [𝑧 / 𝑦]𝑧𝑦)
31nfnth 1846 . . . . 5 𝑦 𝑧𝑧
4 elequ2 2121 . . . . 5 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
53, 4sbie 2484 . . . 4 ([𝑧 / 𝑦]𝑧𝑦𝑧𝑧)
62, 5sylib 210 . . 3 (∀𝑦 𝑧𝑦𝑧𝑧)
71, 6mto 189 . 2 ¬ ∀𝑦 𝑧𝑦
8 axc11 2396 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑧𝑦 → ∀𝑦 𝑧𝑦))
97, 8mtoi 191 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1599  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-reg 8786
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-v 3400  df-dif 3795  df-un 3797  df-nul 4142  df-sn 4399  df-pr 4401
This theorem is referenced by:  axrepnd  9751  axpownd  9758  axinfndlem1  9762  axacndlem4  9767
  Copyright terms: Public domain W3C validator