MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd2 Structured version   Visualization version   GIF version

Theorem nd2 10486
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd2 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)

Proof of Theorem nd2
StepHypRef Expression
1 elirrv 9490 . . 3 ¬ 𝑧𝑧
2 stdpc4 2073 . . . 4 (∀𝑦 𝑧𝑦 → [𝑧 / 𝑦]𝑧𝑦)
31nfnth 1803 . . . . 5 𝑦 𝑧𝑧
4 elequ2 2128 . . . . 5 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
53, 4sbie 2504 . . . 4 ([𝑧 / 𝑦]𝑧𝑦𝑧𝑧)
62, 5sylib 218 . . 3 (∀𝑦 𝑧𝑦𝑧𝑧)
71, 6mto 197 . 2 ¬ ∀𝑦 𝑧𝑦
8 axc11 2432 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑧𝑦 → ∀𝑦 𝑧𝑦))
97, 8mtoi 199 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-13 2374  ax-sep 5236  ax-pr 5372  ax-reg 9485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  axrepnd  10492  axpownd  10499  axinfndlem1  10503  axacndlem4  10508
  Copyright terms: Public domain W3C validator