Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nd2 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd2 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9285 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
2 | stdpc4 2072 | . . . 4 ⊢ (∀𝑦 𝑧 ∈ 𝑦 → [𝑧 / 𝑦]𝑧 ∈ 𝑦) | |
3 | 1 | nfnth 1806 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
4 | elequ2 2123 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑧)) | |
5 | 3, 4 | sbie 2506 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑧) |
6 | 2, 5 | sylib 217 | . . 3 ⊢ (∀𝑦 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑧) |
7 | 1, 6 | mto 196 | . 2 ⊢ ¬ ∀𝑦 𝑧 ∈ 𝑦 |
8 | axc11 2430 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑦 → ∀𝑦 𝑧 ∈ 𝑦)) | |
9 | 7, 8 | mtoi 198 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: axrepnd 10281 axpownd 10288 axinfndlem1 10292 axacndlem4 10297 |
Copyright terms: Public domain | W3C validator |