![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd1 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9632 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
2 | stdpc4 2064 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → [𝑧 / 𝑦]𝑦 ∈ 𝑧) | |
3 | 1 | nfnth 1797 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
4 | elequ1 2106 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧)) | |
5 | 3, 4 | sbie 2496 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧) |
6 | 2, 5 | sylib 217 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → 𝑧 ∈ 𝑧) |
7 | 1, 6 | mto 196 | . 2 ⊢ ¬ ∀𝑦 𝑦 ∈ 𝑧 |
8 | axc11 2424 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∀𝑦 𝑦 ∈ 𝑧)) | |
9 | 7, 8 | mtoi 198 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1532 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-13 2366 ax-ext 2697 ax-sep 5296 ax-pr 5425 ax-reg 9628 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-v 3464 df-un 3951 df-sn 4624 df-pr 4626 |
This theorem is referenced by: axrepnd 10628 axinfndlem1 10639 axinfnd 10640 axacndlem1 10641 axacndlem2 10642 |
Copyright terms: Public domain | W3C validator |