| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nd1 | Structured version Visualization version GIF version | ||
| Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nd1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9483 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 2 | stdpc4 2071 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → [𝑧 / 𝑦]𝑦 ∈ 𝑧) | |
| 3 | 1 | nfnth 1803 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
| 4 | elequ1 2118 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧)) | |
| 5 | 3, 4 | sbie 2502 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧) |
| 6 | 2, 5 | sylib 218 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → 𝑧 ∈ 𝑧) |
| 7 | 1, 6 | mto 197 | . 2 ⊢ ¬ ∀𝑦 𝑦 ∈ 𝑧 |
| 8 | axc11 2430 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∀𝑦 𝑦 ∈ 𝑧)) | |
| 9 | 7, 8 | mtoi 199 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-13 2372 ax-sep 5234 ax-pr 5370 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: axrepnd 10482 axinfndlem1 10493 axinfnd 10494 axacndlem1 10495 axacndlem2 10496 |
| Copyright terms: Public domain | W3C validator |