MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd1 Structured version   Visualization version   GIF version

Theorem nd1 10656
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)

Proof of Theorem nd1
StepHypRef Expression
1 elirrv 9665 . . 3 ¬ 𝑧𝑧
2 stdpc4 2068 . . . 4 (∀𝑦 𝑦𝑧 → [𝑧 / 𝑦]𝑦𝑧)
31nfnth 1800 . . . . 5 𝑦 𝑧𝑧
4 elequ1 2115 . . . . 5 (𝑦 = 𝑧 → (𝑦𝑧𝑧𝑧))
53, 4sbie 2510 . . . 4 ([𝑧 / 𝑦]𝑦𝑧𝑧𝑧)
62, 5sylib 218 . . 3 (∀𝑦 𝑦𝑧𝑧𝑧)
71, 6mto 197 . 2 ¬ ∀𝑦 𝑦𝑧
8 axc11 2438 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∀𝑦 𝑦𝑧))
97, 8mtoi 199 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-13 2380  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  axrepnd  10663  axinfndlem1  10674  axinfnd  10675  axacndlem1  10676  axacndlem2  10677
  Copyright terms: Public domain W3C validator