MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd1 Structured version   Visualization version   GIF version

Theorem nd1 9744
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 1-Jan-2002.)
Assertion
Ref Expression
nd1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)

Proof of Theorem nd1
StepHypRef Expression
1 elirrv 8790 . . 3 ¬ 𝑧𝑧
2 stdpc4 2427 . . . 4 (∀𝑦 𝑦𝑧 → [𝑧 / 𝑦]𝑦𝑧)
31nfnth 1846 . . . . 5 𝑦 𝑧𝑧
4 elequ1 2113 . . . . 5 (𝑦 = 𝑧 → (𝑦𝑧𝑧𝑧))
53, 4sbie 2483 . . . 4 ([𝑧 / 𝑦]𝑦𝑧𝑧𝑧)
62, 5sylib 210 . . 3 (∀𝑦 𝑦𝑧𝑧𝑧)
71, 6mto 189 . 2 ¬ ∀𝑦 𝑦𝑧
8 axc11 2395 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∀𝑦 𝑦𝑧))
97, 8mtoi 191 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1599  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-reg 8786
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-v 3399  df-dif 3794  df-un 3796  df-nul 4141  df-sn 4398  df-pr 4400
This theorem is referenced by:  axrepnd  9751  axinfndlem1  9762  axinfnd  9763  axacndlem1  9764  axacndlem2  9765
  Copyright terms: Public domain W3C validator