![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd1 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9665 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
2 | stdpc4 2068 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → [𝑧 / 𝑦]𝑦 ∈ 𝑧) | |
3 | 1 | nfnth 1800 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
4 | elequ1 2115 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧)) | |
5 | 3, 4 | sbie 2510 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧) |
6 | 2, 5 | sylib 218 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → 𝑧 ∈ 𝑧) |
7 | 1, 6 | mto 197 | . 2 ⊢ ¬ ∀𝑦 𝑦 ∈ 𝑧 |
8 | axc11 2438 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∀𝑦 𝑦 ∈ 𝑧)) | |
9 | 7, 8 | mtoi 199 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-13 2380 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: axrepnd 10663 axinfndlem1 10674 axinfnd 10675 axacndlem1 10676 axacndlem2 10677 |
Copyright terms: Public domain | W3C validator |