| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nd1 | Structured version Visualization version GIF version | ||
| Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nd1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9615 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 2 | stdpc4 2069 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → [𝑧 / 𝑦]𝑦 ∈ 𝑧) | |
| 3 | 1 | nfnth 1802 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
| 4 | elequ1 2116 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧)) | |
| 5 | 3, 4 | sbie 2507 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧) |
| 6 | 2, 5 | sylib 218 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → 𝑧 ∈ 𝑧) |
| 7 | 1, 6 | mto 197 | . 2 ⊢ ¬ ∀𝑦 𝑦 ∈ 𝑧 |
| 8 | axc11 2435 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∀𝑦 𝑦 ∈ 𝑧)) | |
| 9 | 7, 8 | mtoi 199 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-13 2377 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: axrepnd 10613 axinfndlem1 10624 axinfnd 10625 axacndlem1 10626 axacndlem2 10627 |
| Copyright terms: Public domain | W3C validator |