MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd1 Structured version   Visualization version   GIF version

Theorem nd1 10606
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)

Proof of Theorem nd1
StepHypRef Expression
1 elirrv 9615 . . 3 ¬ 𝑧𝑧
2 stdpc4 2069 . . . 4 (∀𝑦 𝑦𝑧 → [𝑧 / 𝑦]𝑦𝑧)
31nfnth 1802 . . . . 5 𝑦 𝑧𝑧
4 elequ1 2116 . . . . 5 (𝑦 = 𝑧 → (𝑦𝑧𝑧𝑧))
53, 4sbie 2507 . . . 4 ([𝑧 / 𝑦]𝑦𝑧𝑧𝑧)
62, 5sylib 218 . . 3 (∀𝑦 𝑦𝑧𝑧𝑧)
71, 6mto 197 . 2 ¬ ∀𝑦 𝑦𝑧
8 axc11 2435 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∀𝑦 𝑦𝑧))
97, 8mtoi 199 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-13 2377  ax-ext 2708  ax-sep 5271  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by:  axrepnd  10613  axinfndlem1  10624  axinfnd  10625  axacndlem1  10626  axacndlem2  10627
  Copyright terms: Public domain W3C validator