MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd1 Structured version   Visualization version   GIF version

Theorem nd1 10274
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)

Proof of Theorem nd1
StepHypRef Expression
1 elirrv 9285 . . 3 ¬ 𝑧𝑧
2 stdpc4 2072 . . . 4 (∀𝑦 𝑦𝑧 → [𝑧 / 𝑦]𝑦𝑧)
31nfnth 1806 . . . . 5 𝑦 𝑧𝑧
4 elequ1 2115 . . . . 5 (𝑦 = 𝑧 → (𝑦𝑧𝑧𝑧))
53, 4sbie 2506 . . . 4 ([𝑧 / 𝑦]𝑦𝑧𝑧𝑧)
62, 5sylib 217 . . 3 (∀𝑦 𝑦𝑧𝑧𝑧)
71, 6mto 196 . 2 ¬ ∀𝑦 𝑦𝑧
8 axc11 2430 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∀𝑦 𝑦𝑧))
97, 8mtoi 198 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-13 2372  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  axrepnd  10281  axinfndlem1  10292  axinfnd  10293  axacndlem1  10294  axacndlem2  10295
  Copyright terms: Public domain W3C validator