| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.61 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm11.61 | ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.12 2326 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥∃𝑦(𝜑 → 𝜓)) | |
| 2 | 19.37v 1990 | . . . 4 ⊢ (∃𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑦𝜓)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (∃𝑦(𝜑 → 𝜓) → (𝜑 → ∃𝑦𝜓)) |
| 4 | 3 | alimi 1810 | . 2 ⊢ (∀𝑥∃𝑦(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |