Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.61 | Structured version Visualization version GIF version |
Description: Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm11.61 | ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.12 2326 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥∃𝑦(𝜑 → 𝜓)) | |
2 | 19.37v 2000 | . . . 4 ⊢ (∃𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑦𝜓)) | |
3 | 2 | biimpi 219 | . . 3 ⊢ (∃𝑦(𝜑 → 𝜓) → (𝜑 → ∃𝑦𝜓)) |
4 | 3 | alimi 1819 | . 2 ⊢ (∀𝑥∃𝑦(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
5 | 1, 4 | syl 17 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-or 848 df-ex 1788 df-nf 1792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |