| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.6 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm11.6 | ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2162 | . . 3 ⊢ (∃𝑥∃𝑦((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦∃𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 2 | 2exbii 1849 | . . 3 ⊢ (∃𝑦∃𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦∃𝑥((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (∃𝑥∃𝑦((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦∃𝑥((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 5 | 19.41v 1949 | . . 3 ⊢ (∃𝑦((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | 5 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 7 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ (∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 8 | 7 | exbii 1848 | . 2 ⊢ (∃𝑦∃𝑥((𝜑 ∧ 𝜒) ∧ 𝜓) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 9 | 4, 6, 8 | 3bitr3i 301 | 1 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |