Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.195 Structured version   Visualization version   GIF version

Theorem pm13.195 44408
Description: Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3818. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.195 (∃𝑦(𝑦 = 𝐴𝜑) ↔ [𝐴 / 𝑦]𝜑)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem pm13.195
StepHypRef Expression
1 sbc5 3818 . 2 ([𝐴 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐴𝜑))
21bicomi 224 1 (∃𝑦(𝑦 = 𝐴𝜑) ↔ [𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wex 1775  [wsbc 3790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-sbc 3791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator