MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc5 Structured version   Visualization version   GIF version

Theorem sbc5 3669
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
sbc5 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3654 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 exsimpl 1956 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) → ∃𝑥 𝑥 = 𝐴)
3 isset 3412 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
42, 3sylibr 225 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
5 dfsbcq2 3647 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 eqeq2 2828 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
76anbi1d 617 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
87exbidv 2012 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sb5 2287 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
105, 8, 9vtoclbg 3471 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
111, 4, 10pm5.21nii 369 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1637  wex 1859  [wsb 2061  wcel 2157  Vcvv 3402  [wsbc 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-12 2215  ax-ext 2795
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810  df-clel 2813  df-v 3404  df-sbc 3645
This theorem is referenced by:  sbc6g  3670  sbc7  3672  sbciegft  3675  sbccomlem  3715  csb2  3741  rexsns  4421  sbccom2lem  34245  pm13.192  39115  pm13.195  39118  2sbc5g  39121  iotasbc  39124  pm14.122b  39128  iotasbc5  39136
  Copyright terms: Public domain W3C validator