MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc5 Structured version   Visualization version   GIF version

Theorem sbc5 3708
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
sbc5 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3693 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 exsimpl 1831 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) → ∃𝑥 𝑥 = 𝐴)
3 isset 3427 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
42, 3sylibr 226 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
5 dfsbcq2 3686 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 eqeq2 2789 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
76anbi1d 620 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
87exbidv 1880 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sb5 2205 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
105, 8, 9vtoclbg 3487 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
111, 4, 10pm5.21nii 371 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wex 1742  [wsb 2015  wcel 2050  Vcvv 3415  [wsbc 3683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-v 3417  df-sbc 3684
This theorem is referenced by:  sbc6g  3709  sbc7  3711  sbciegft  3714  sbccomlem  3758  csb2  3790  rexsns  4482  sbcop1  5237  sbccom2lem  34846  pm13.192  40159  pm13.195  40162  2sbc5g  40165  iotasbc  40168  pm14.122b  40172  iotasbc5  40180  sbcpr  43052
  Copyright terms: Public domain W3C validator