Proof of Theorem oexpreposd
Step | Hyp | Ref
| Expression |
1 | | oexpreposd.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℝ) |
3 | | oexpreposd.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | 3 | nnzd 12425 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑀 ∈ ℤ) |
6 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁) |
7 | | expgt0 13816 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 <
𝑁) → 0 < (𝑁↑𝑀)) |
8 | 2, 5, 6, 7 | syl3anc 1370 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑁) → 0 < (𝑁↑𝑀)) |
9 | 8 | ex 413 |
. 2
⊢ (𝜑 → (0 < 𝑁 → 0 < (𝑁↑𝑀))) |
10 | | 0red 10978 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
11 | 10, 1 | lttrid 11113 |
. . . 4
⊢ (𝜑 → (0 < 𝑁 ↔ ¬ (0 = 𝑁 ∨ 𝑁 < 0))) |
12 | 11 | notbid 318 |
. . 3
⊢ (𝜑 → (¬ 0 < 𝑁 ↔ ¬ ¬ (0 = 𝑁 ∨ 𝑁 < 0))) |
13 | | notnotr 130 |
. . . 4
⊢ (¬
¬ (0 = 𝑁 ∨ 𝑁 < 0) → (0 = 𝑁 ∨ 𝑁 < 0)) |
14 | | 0re 10977 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
15 | 14 | ltnri 11084 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
16 | 3 | 0expd 13857 |
. . . . . . . . . 10
⊢ (𝜑 → (0↑𝑀) = 0) |
17 | 16 | breq2d 5086 |
. . . . . . . . 9
⊢ (𝜑 → (0 < (0↑𝑀) ↔ 0 <
0)) |
18 | 15, 17 | mtbiri 327 |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 < (0↑𝑀)) |
19 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (0↑𝑀)) |
20 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 = 𝑁) → 0 = 𝑁) |
21 | 20 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 = 𝑁) → 𝑁 = 0) |
22 | 21 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 = 𝑁) → (𝑁↑𝑀) = (0↑𝑀)) |
23 | 22 | breq2d 5086 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 = 𝑁) → (0 < (𝑁↑𝑀) ↔ 0 < (0↑𝑀))) |
24 | 19, 23 | mtbird 325 |
. . . . . 6
⊢ ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (𝑁↑𝑀)) |
25 | 24 | ex 413 |
. . . . 5
⊢ (𝜑 → (0 = 𝑁 → ¬ 0 < (𝑁↑𝑀))) |
26 | 1 | renegcld 11402 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑁 ∈ ℝ) |
27 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝑁) → -𝑁 ∈ ℝ) |
28 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝑁) → 𝑀 ∈ ℤ) |
29 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝑁) → 0 < -𝑁) |
30 | | expgt0 13816 |
. . . . . . . . 9
⊢ ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 <
-𝑁) → 0 < (-𝑁↑𝑀)) |
31 | 27, 28, 29, 30 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < -𝑁) → 0 < (-𝑁↑𝑀)) |
32 | 31 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (0 < -𝑁 → 0 < (-𝑁↑𝑀))) |
33 | 1 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℂ) |
34 | | oexpreposd.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ (𝑀 / 2) ∈ ℕ) |
35 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈
ℤ) |
36 | | zq 12694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 / 2) ∈ ℤ →
(𝑀 / 2) ∈
ℚ) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈
ℚ) |
38 | | qden1elz 16461 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 / 2) ∈ ℚ →
((denom‘(𝑀 / 2)) = 1
↔ (𝑀 / 2) ∈
ℤ)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) →
((denom‘(𝑀 / 2)) = 1
↔ (𝑀 / 2) ∈
ℤ)) |
40 | 35, 39 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) →
(denom‘(𝑀 / 2)) =
1) |
41 | 40 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) ·
(denom‘(𝑀 / 2))) =
((𝑀 / 2) ·
1)) |
42 | | qmuldeneqnum 16451 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 / 2) ∈ ℚ →
((𝑀 / 2) ·
(denom‘(𝑀 / 2))) =
(numer‘(𝑀 /
2))) |
43 | 37, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) ·
(denom‘(𝑀 / 2))) =
(numer‘(𝑀 /
2))) |
44 | 35 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈
ℂ) |
45 | 44 | mulid1d 10992 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · 1) = (𝑀 / 2)) |
46 | 41, 43, 45 | 3eqtr3rd 2787 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) = (numer‘(𝑀 / 2))) |
47 | 3 | nnred 11988 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℝ) |
48 | | 2re 12047 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℝ) |
50 | 3 | nngt0d 12022 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < 𝑀) |
51 | | 2pos 12076 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
2 |
52 | 51 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < 2) |
53 | 47, 49, 50, 52 | divgt0d 11910 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (𝑀 / 2)) |
54 | | qgt0numnn 16455 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 / 2) ∈ ℚ ∧ 0
< (𝑀 / 2)) →
(numer‘(𝑀 / 2))
∈ ℕ) |
55 | 36, 53, 54 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) →
(numer‘(𝑀 / 2))
∈ ℕ) |
56 | 46, 55 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈
ℕ) |
57 | 34, 56 | mtand 813 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑀 / 2) ∈ ℤ) |
58 | | evend2 16066 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → (2
∥ 𝑀 ↔ (𝑀 / 2) ∈
ℤ)) |
59 | 4, 58 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) |
60 | 57, 59 | mtbird 325 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 2 ∥ 𝑀) |
61 | | oexpneg 16054 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) → (-𝑁↑𝑀) = -(𝑁↑𝑀)) |
62 | 33, 3, 60, 61 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (-𝑁↑𝑀) = -(𝑁↑𝑀)) |
63 | 62 | breq2d 5086 |
. . . . . . . 8
⊢ (𝜑 → (0 < (-𝑁↑𝑀) ↔ 0 < -(𝑁↑𝑀))) |
64 | 63 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (0 < (-𝑁↑𝑀) → 0 < -(𝑁↑𝑀))) |
65 | 3 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
66 | 1, 65 | reexpcld 13881 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁↑𝑀) ∈ ℝ) |
67 | 66 | renegcld 11402 |
. . . . . . . . 9
⊢ (𝜑 → -(𝑁↑𝑀) ∈ ℝ) |
68 | 10, 67 | lttrid 11113 |
. . . . . . . 8
⊢ (𝜑 → (0 < -(𝑁↑𝑀) ↔ ¬ (0 = -(𝑁↑𝑀) ∨ -(𝑁↑𝑀) < 0))) |
69 | | pm2.46 880 |
. . . . . . . 8
⊢ (¬ (0
= -(𝑁↑𝑀) ∨ -(𝑁↑𝑀) < 0) → ¬ -(𝑁↑𝑀) < 0) |
70 | 68, 69 | syl6bi 252 |
. . . . . . 7
⊢ (𝜑 → (0 < -(𝑁↑𝑀) → ¬ -(𝑁↑𝑀) < 0)) |
71 | 32, 64, 70 | 3syld 60 |
. . . . . 6
⊢ (𝜑 → (0 < -𝑁 → ¬ -(𝑁↑𝑀) < 0)) |
72 | 1 | lt0neg1d 11544 |
. . . . . 6
⊢ (𝜑 → (𝑁 < 0 ↔ 0 < -𝑁)) |
73 | 66 | lt0neg2d 11545 |
. . . . . . 7
⊢ (𝜑 → (0 < (𝑁↑𝑀) ↔ -(𝑁↑𝑀) < 0)) |
74 | 73 | notbid 318 |
. . . . . 6
⊢ (𝜑 → (¬ 0 < (𝑁↑𝑀) ↔ ¬ -(𝑁↑𝑀) < 0)) |
75 | 71, 72, 74 | 3imtr4d 294 |
. . . . 5
⊢ (𝜑 → (𝑁 < 0 → ¬ 0 < (𝑁↑𝑀))) |
76 | 25, 75 | jaod 856 |
. . . 4
⊢ (𝜑 → ((0 = 𝑁 ∨ 𝑁 < 0) → ¬ 0 < (𝑁↑𝑀))) |
77 | 13, 76 | syl5 34 |
. . 3
⊢ (𝜑 → (¬ ¬ (0 = 𝑁 ∨ 𝑁 < 0) → ¬ 0 < (𝑁↑𝑀))) |
78 | 12, 77 | sylbid 239 |
. 2
⊢ (𝜑 → (¬ 0 < 𝑁 → ¬ 0 < (𝑁↑𝑀))) |
79 | 9, 78 | impcon4bid 226 |
1
⊢ (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁↑𝑀))) |