Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oexpreposd Structured version   Visualization version   GIF version

Theorem oexpreposd 42338
Description: Lemma for dffltz 42624. For a more standard version, see expgt0b 32800. TODO-SN?: This can be used to show exp11d 42342 holds for all integers when the exponent is odd. (Contributed by SN, 4-Mar-2023.)
Hypotheses
Ref Expression
oexpreposd.n (𝜑𝑁 ∈ ℝ)
oexpreposd.m (𝜑𝑀 ∈ ℕ)
oexpreposd.1 (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)
Assertion
Ref Expression
oexpreposd (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))

Proof of Theorem oexpreposd
StepHypRef Expression
1 oexpreposd.n . . . . 5 (𝜑𝑁 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℝ)
3 oexpreposd.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
43nnzd 12620 . . . . 5 (𝜑𝑀 ∈ ℤ)
54adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 𝑀 ∈ ℤ)
6 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
7 expgt0 14118 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁𝑀))
82, 5, 6, 7syl3anc 1373 . . 3 ((𝜑 ∧ 0 < 𝑁) → 0 < (𝑁𝑀))
98ex 412 . 2 (𝜑 → (0 < 𝑁 → 0 < (𝑁𝑀)))
10 0red 11243 . . . . 5 (𝜑 → 0 ∈ ℝ)
1110, 1lttrid 11378 . . . 4 (𝜑 → (0 < 𝑁 ↔ ¬ (0 = 𝑁𝑁 < 0)))
1211notbid 318 . . 3 (𝜑 → (¬ 0 < 𝑁 ↔ ¬ ¬ (0 = 𝑁𝑁 < 0)))
13 notnotr 130 . . . 4 (¬ ¬ (0 = 𝑁𝑁 < 0) → (0 = 𝑁𝑁 < 0))
14 0re 11242 . . . . . . . . . 10 0 ∈ ℝ
1514ltnri 11349 . . . . . . . . 9 ¬ 0 < 0
1630expd 14162 . . . . . . . . . 10 (𝜑 → (0↑𝑀) = 0)
1716breq2d 5136 . . . . . . . . 9 (𝜑 → (0 < (0↑𝑀) ↔ 0 < 0))
1815, 17mtbiri 327 . . . . . . . 8 (𝜑 → ¬ 0 < (0↑𝑀))
1918adantr 480 . . . . . . 7 ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (0↑𝑀))
20 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 = 𝑁) → 0 = 𝑁)
2120eqcomd 2742 . . . . . . . . 9 ((𝜑 ∧ 0 = 𝑁) → 𝑁 = 0)
2221oveq1d 7425 . . . . . . . 8 ((𝜑 ∧ 0 = 𝑁) → (𝑁𝑀) = (0↑𝑀))
2322breq2d 5136 . . . . . . 7 ((𝜑 ∧ 0 = 𝑁) → (0 < (𝑁𝑀) ↔ 0 < (0↑𝑀)))
2419, 23mtbird 325 . . . . . 6 ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (𝑁𝑀))
2524ex 412 . . . . 5 (𝜑 → (0 = 𝑁 → ¬ 0 < (𝑁𝑀)))
261renegcld 11669 . . . . . . . . . 10 (𝜑 → -𝑁 ∈ ℝ)
2726adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → -𝑁 ∈ ℝ)
284adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → 𝑀 ∈ ℤ)
29 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → 0 < -𝑁)
30 expgt0 14118 . . . . . . . . 9 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < -𝑁) → 0 < (-𝑁𝑀))
3127, 28, 29, 30syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ 0 < -𝑁) → 0 < (-𝑁𝑀))
3231ex 412 . . . . . . 7 (𝜑 → (0 < -𝑁 → 0 < (-𝑁𝑀)))
331recnd 11268 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
34 oexpreposd.1 . . . . . . . . . . . 12 (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
36 zq 12975 . . . . . . . . . . . . . . . . . 18 ((𝑀 / 2) ∈ ℤ → (𝑀 / 2) ∈ ℚ)
3736adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℚ)
38 qden1elz 16781 . . . . . . . . . . . . . . . . 17 ((𝑀 / 2) ∈ ℚ → ((denom‘(𝑀 / 2)) = 1 ↔ (𝑀 / 2) ∈ ℤ))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((denom‘(𝑀 / 2)) = 1 ↔ (𝑀 / 2) ∈ ℤ))
4035, 39mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (denom‘(𝑀 / 2)) = 1)
4140oveq2d 7426 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = ((𝑀 / 2) · 1))
42 qmuldeneqnum 16771 . . . . . . . . . . . . . . 15 ((𝑀 / 2) ∈ ℚ → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = (numer‘(𝑀 / 2)))
4337, 42syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = (numer‘(𝑀 / 2)))
4435zcnd 12703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℂ)
4544mulridd 11257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · 1) = (𝑀 / 2))
4641, 43, 453eqtr3rd 2780 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) = (numer‘(𝑀 / 2)))
473nnred 12260 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
48 2re 12319 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
503nngt0d 12294 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑀)
51 2pos 12348 . . . . . . . . . . . . . . . 16 0 < 2
5251a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
5347, 49, 50, 52divgt0d 12182 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑀 / 2))
54 qgt0numnn 16775 . . . . . . . . . . . . . 14 (((𝑀 / 2) ∈ ℚ ∧ 0 < (𝑀 / 2)) → (numer‘(𝑀 / 2)) ∈ ℕ)
5536, 53, 54syl2anr 597 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (numer‘(𝑀 / 2)) ∈ ℕ)
5646, 55eqeltrd 2835 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℕ)
5734, 56mtand 815 . . . . . . . . . . 11 (𝜑 → ¬ (𝑀 / 2) ∈ ℤ)
58 evend2 16381 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
594, 58syl 17 . . . . . . . . . . 11 (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
6057, 59mtbird 325 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝑀)
61 oexpneg 16369 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) → (-𝑁𝑀) = -(𝑁𝑀))
6233, 3, 60, 61syl3anc 1373 . . . . . . . . 9 (𝜑 → (-𝑁𝑀) = -(𝑁𝑀))
6362breq2d 5136 . . . . . . . 8 (𝜑 → (0 < (-𝑁𝑀) ↔ 0 < -(𝑁𝑀)))
6463biimpd 229 . . . . . . 7 (𝜑 → (0 < (-𝑁𝑀) → 0 < -(𝑁𝑀)))
653nnnn0d 12567 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
661, 65reexpcld 14186 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℝ)
6766renegcld 11669 . . . . . . . . 9 (𝜑 → -(𝑁𝑀) ∈ ℝ)
6810, 67lttrid 11378 . . . . . . . 8 (𝜑 → (0 < -(𝑁𝑀) ↔ ¬ (0 = -(𝑁𝑀) ∨ -(𝑁𝑀) < 0)))
69 pm2.46 882 . . . . . . . 8 (¬ (0 = -(𝑁𝑀) ∨ -(𝑁𝑀) < 0) → ¬ -(𝑁𝑀) < 0)
7068, 69biimtrdi 253 . . . . . . 7 (𝜑 → (0 < -(𝑁𝑀) → ¬ -(𝑁𝑀) < 0))
7132, 64, 703syld 60 . . . . . 6 (𝜑 → (0 < -𝑁 → ¬ -(𝑁𝑀) < 0))
721lt0neg1d 11811 . . . . . 6 (𝜑 → (𝑁 < 0 ↔ 0 < -𝑁))
7366lt0neg2d 11812 . . . . . . 7 (𝜑 → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
7473notbid 318 . . . . . 6 (𝜑 → (¬ 0 < (𝑁𝑀) ↔ ¬ -(𝑁𝑀) < 0))
7571, 72, 743imtr4d 294 . . . . 5 (𝜑 → (𝑁 < 0 → ¬ 0 < (𝑁𝑀)))
7625, 75jaod 859 . . . 4 (𝜑 → ((0 = 𝑁𝑁 < 0) → ¬ 0 < (𝑁𝑀)))
7713, 76syl5 34 . . 3 (𝜑 → (¬ ¬ (0 = 𝑁𝑁 < 0) → ¬ 0 < (𝑁𝑀)))
7812, 77sylbid 240 . 2 (𝜑 → (¬ 0 < 𝑁 → ¬ 0 < (𝑁𝑀)))
799, 78impcon4bid 227 1 (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  cz 12593  cq 12969  cexp 14084  cdvds 16277  numercnumer 16757  denomcdenom 16758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-numer 16759  df-denom 16760
This theorem is referenced by:  dffltz  42624
  Copyright terms: Public domain W3C validator