Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oexpreposd Structured version   Visualization version   GIF version

Theorem oexpreposd 39487
Description: Lemma for dffltz 39615. (Contributed by Steven Nguyen, 4-Mar-2023.)
Hypotheses
Ref Expression
oexpreposd.n (𝜑𝑁 ∈ ℝ)
oexpreposd.m (𝜑𝑀 ∈ ℕ)
oexpreposd.1 (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)
Assertion
Ref Expression
oexpreposd (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))

Proof of Theorem oexpreposd
StepHypRef Expression
1 oexpreposd.n . . . . 5 (𝜑𝑁 ∈ ℝ)
21adantr 484 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℝ)
3 oexpreposd.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
43nnzd 12074 . . . . 5 (𝜑𝑀 ∈ ℤ)
54adantr 484 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 𝑀 ∈ ℤ)
6 simpr 488 . . . 4 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
7 expgt0 13458 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁𝑀))
82, 5, 6, 7syl3anc 1368 . . 3 ((𝜑 ∧ 0 < 𝑁) → 0 < (𝑁𝑀))
98ex 416 . 2 (𝜑 → (0 < 𝑁 → 0 < (𝑁𝑀)))
10 0red 10633 . . . . 5 (𝜑 → 0 ∈ ℝ)
1110, 1lttrid 10767 . . . 4 (𝜑 → (0 < 𝑁 ↔ ¬ (0 = 𝑁𝑁 < 0)))
1211notbid 321 . . 3 (𝜑 → (¬ 0 < 𝑁 ↔ ¬ ¬ (0 = 𝑁𝑁 < 0)))
13 notnotr 132 . . . 4 (¬ ¬ (0 = 𝑁𝑁 < 0) → (0 = 𝑁𝑁 < 0))
14 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
1514ltnri 10738 . . . . . . . . 9 ¬ 0 < 0
1630expd 13499 . . . . . . . . . 10 (𝜑 → (0↑𝑀) = 0)
1716breq2d 5042 . . . . . . . . 9 (𝜑 → (0 < (0↑𝑀) ↔ 0 < 0))
1815, 17mtbiri 330 . . . . . . . 8 (𝜑 → ¬ 0 < (0↑𝑀))
1918adantr 484 . . . . . . 7 ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (0↑𝑀))
20 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ 0 = 𝑁) → 0 = 𝑁)
2120eqcomd 2804 . . . . . . . . 9 ((𝜑 ∧ 0 = 𝑁) → 𝑁 = 0)
2221oveq1d 7150 . . . . . . . 8 ((𝜑 ∧ 0 = 𝑁) → (𝑁𝑀) = (0↑𝑀))
2322breq2d 5042 . . . . . . 7 ((𝜑 ∧ 0 = 𝑁) → (0 < (𝑁𝑀) ↔ 0 < (0↑𝑀)))
2419, 23mtbird 328 . . . . . 6 ((𝜑 ∧ 0 = 𝑁) → ¬ 0 < (𝑁𝑀))
2524ex 416 . . . . 5 (𝜑 → (0 = 𝑁 → ¬ 0 < (𝑁𝑀)))
261renegcld 11056 . . . . . . . . . 10 (𝜑 → -𝑁 ∈ ℝ)
2726adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → -𝑁 ∈ ℝ)
284adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → 𝑀 ∈ ℤ)
29 simpr 488 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝑁) → 0 < -𝑁)
30 expgt0 13458 . . . . . . . . 9 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < -𝑁) → 0 < (-𝑁𝑀))
3127, 28, 29, 30syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ 0 < -𝑁) → 0 < (-𝑁𝑀))
3231ex 416 . . . . . . 7 (𝜑 → (0 < -𝑁 → 0 < (-𝑁𝑀)))
331recnd 10658 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
34 oexpreposd.1 . . . . . . . . . . . 12 (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)
35 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
36 zq 12342 . . . . . . . . . . . . . . . . . 18 ((𝑀 / 2) ∈ ℤ → (𝑀 / 2) ∈ ℚ)
3736adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℚ)
38 qden1elz 16087 . . . . . . . . . . . . . . . . 17 ((𝑀 / 2) ∈ ℚ → ((denom‘(𝑀 / 2)) = 1 ↔ (𝑀 / 2) ∈ ℤ))
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((denom‘(𝑀 / 2)) = 1 ↔ (𝑀 / 2) ∈ ℤ))
4035, 39mpbird 260 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (denom‘(𝑀 / 2)) = 1)
4140oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = ((𝑀 / 2) · 1))
42 qmuldeneqnum 16077 . . . . . . . . . . . . . . 15 ((𝑀 / 2) ∈ ℚ → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = (numer‘(𝑀 / 2)))
4337, 42syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · (denom‘(𝑀 / 2))) = (numer‘(𝑀 / 2)))
4435zcnd 12076 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℂ)
4544mulid1d 10647 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → ((𝑀 / 2) · 1) = (𝑀 / 2))
4641, 43, 453eqtr3rd 2842 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) = (numer‘(𝑀 / 2)))
473nnred 11640 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
48 2re 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
503nngt0d 11674 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑀)
51 2pos 11728 . . . . . . . . . . . . . . . 16 0 < 2
5251a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
5347, 49, 50, 52divgt0d 11564 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑀 / 2))
54 qgt0numnn 16081 . . . . . . . . . . . . . 14 (((𝑀 / 2) ∈ ℚ ∧ 0 < (𝑀 / 2)) → (numer‘(𝑀 / 2)) ∈ ℕ)
5536, 53, 54syl2anr 599 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (numer‘(𝑀 / 2)) ∈ ℕ)
5646, 55eqeltrd 2890 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 / 2) ∈ ℤ) → (𝑀 / 2) ∈ ℕ)
5734, 56mtand 815 . . . . . . . . . . 11 (𝜑 → ¬ (𝑀 / 2) ∈ ℤ)
58 evend2 15698 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
594, 58syl 17 . . . . . . . . . . 11 (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
6057, 59mtbird 328 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝑀)
61 oexpneg 15686 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) → (-𝑁𝑀) = -(𝑁𝑀))
6233, 3, 60, 61syl3anc 1368 . . . . . . . . 9 (𝜑 → (-𝑁𝑀) = -(𝑁𝑀))
6362breq2d 5042 . . . . . . . 8 (𝜑 → (0 < (-𝑁𝑀) ↔ 0 < -(𝑁𝑀)))
6463biimpd 232 . . . . . . 7 (𝜑 → (0 < (-𝑁𝑀) → 0 < -(𝑁𝑀)))
653nnnn0d 11943 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
661, 65reexpcld 13523 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℝ)
6766renegcld 11056 . . . . . . . . 9 (𝜑 → -(𝑁𝑀) ∈ ℝ)
6810, 67lttrid 10767 . . . . . . . 8 (𝜑 → (0 < -(𝑁𝑀) ↔ ¬ (0 = -(𝑁𝑀) ∨ -(𝑁𝑀) < 0)))
69 pm2.46 880 . . . . . . . 8 (¬ (0 = -(𝑁𝑀) ∨ -(𝑁𝑀) < 0) → ¬ -(𝑁𝑀) < 0)
7068, 69syl6bi 256 . . . . . . 7 (𝜑 → (0 < -(𝑁𝑀) → ¬ -(𝑁𝑀) < 0))
7132, 64, 703syld 60 . . . . . 6 (𝜑 → (0 < -𝑁 → ¬ -(𝑁𝑀) < 0))
721lt0neg1d 11198 . . . . . 6 (𝜑 → (𝑁 < 0 ↔ 0 < -𝑁))
7366lt0neg2d 11199 . . . . . . 7 (𝜑 → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
7473notbid 321 . . . . . 6 (𝜑 → (¬ 0 < (𝑁𝑀) ↔ ¬ -(𝑁𝑀) < 0))
7571, 72, 743imtr4d 297 . . . . 5 (𝜑 → (𝑁 < 0 → ¬ 0 < (𝑁𝑀)))
7625, 75jaod 856 . . . 4 (𝜑 → ((0 = 𝑁𝑁 < 0) → ¬ 0 < (𝑁𝑀)))
7713, 76syl5 34 . . 3 (𝜑 → (¬ ¬ (0 = 𝑁𝑁 < 0) → ¬ 0 < (𝑁𝑀)))
7812, 77sylbid 243 . 2 (𝜑 → (¬ 0 < 𝑁 → ¬ 0 < (𝑁𝑀)))
799, 78impcon4bid 230 1 (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  cz 11969  cq 12336  cexp 13425  cdvds 15599  numercnumer 16063  denomcdenom 16064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066
This theorem is referenced by:  dffltz  39615
  Copyright terms: Public domain W3C validator