MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineneq Structured version   Visualization version   GIF version

Theorem tglineneq 26766
Description: Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Assertion
Ref Expression
tglineneq (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))

Proof of Theorem tglineneq
StepHypRef Expression
1 tglineintmo.p . . . 4 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
6 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
7 tglineinteq.c . . . . 5 (𝜑𝐶𝑃)
8 tglineinteq.e . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
91, 2, 3, 4, 5, 6, 7, 8ncolne1 26747 . . . 4 (𝜑𝐴𝐵)
101, 2, 3, 4, 5, 6, 9tglinerflx1 26755 . . 3 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
11 simplr 769 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶 = 𝐷)
124adantr 484 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
137adantr 484 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝑃)
14 tglineinteq.d . . . . . . . 8 (𝜑𝐷𝑃)
1514adantr 484 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐷𝑃)
16 simpr 488 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
171, 3, 2, 12, 13, 15, 16tglngne 26672 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1817adantlr 715 . . . . 5 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1918neneqd 2948 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → ¬ 𝐶 = 𝐷)
2011, 19pm2.65da 817 . . 3 ((𝜑𝐶 = 𝐷) → ¬ 𝐴 ∈ (𝐶𝐿𝐷))
21 nelne1 3041 . . 3 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
2210, 20, 21syl2an2r 685 . 2 ((𝜑𝐶 = 𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
234ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
246ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝑃)
257ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝑃)
265ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝑃)
27 pm2.46 883 . . . . . . . . 9 (¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶) → ¬ 𝐵 = 𝐶)
288, 27syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐵 = 𝐶)
2928neqned 2950 . . . . . . 7 (𝜑𝐵𝐶)
3029ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝐶)
3114ad2antrr 726 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐷𝑃)
32 simplr 769 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝐷)
331, 2, 3, 23, 25, 31, 32tglinerflx1 26755 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
34 simpr 488 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
3533, 34eleqtrrd 2843 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐴𝐿𝐵))
361, 3, 2, 23, 26, 24, 35tglngne 26672 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝐵)
371, 2, 3, 23, 24, 25, 26, 30, 35, 36lnrot1 26745 . . . . 5 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐵𝐿𝐶))
3837orcd 873 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
398ad2antrr 726 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
4038, 39pm2.65da 817 . . 3 ((𝜑𝐶𝐷) → ¬ (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
4140neqned 2950 . 2 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
4222, 41pm2.61dane 3032 1 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2943  cfv 6400  (class class class)co 7234  Basecbs 16792  TarskiGcstrkg 26552  Itvcitv 26558  LineGclng 26559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pr 5338  ax-un 7544
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-id 5471  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-fv 6408  df-ov 7237  df-oprab 7238  df-mpo 7239  df-1st 7782  df-2nd 7783  df-trkgc 26570  df-trkgb 26571  df-trkgcb 26572  df-trkg 26575
This theorem is referenced by:  tglineinteq  26767  perpneq  26836
  Copyright terms: Public domain W3C validator