MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineneq Structured version   Visualization version   GIF version

Theorem tglineneq 28670
Description: Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Assertion
Ref Expression
tglineneq (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))

Proof of Theorem tglineneq
StepHypRef Expression
1 tglineintmo.p . . . 4 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
6 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
7 tglineinteq.c . . . . 5 (𝜑𝐶𝑃)
8 tglineinteq.e . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
91, 2, 3, 4, 5, 6, 7, 8ncolne1 28651 . . . 4 (𝜑𝐴𝐵)
101, 2, 3, 4, 5, 6, 9tglinerflx1 28659 . . 3 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
11 simplr 768 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶 = 𝐷)
124adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
137adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝑃)
14 tglineinteq.d . . . . . . . 8 (𝜑𝐷𝑃)
1514adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐷𝑃)
16 simpr 484 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
171, 3, 2, 12, 13, 15, 16tglngne 28576 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1817adantlr 714 . . . . 5 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1918neneqd 2951 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → ¬ 𝐶 = 𝐷)
2011, 19pm2.65da 816 . . 3 ((𝜑𝐶 = 𝐷) → ¬ 𝐴 ∈ (𝐶𝐿𝐷))
21 nelne1 3045 . . 3 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
2210, 20, 21syl2an2r 684 . 2 ((𝜑𝐶 = 𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
234ad2antrr 725 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
246ad2antrr 725 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝑃)
257ad2antrr 725 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝑃)
265ad2antrr 725 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝑃)
27 pm2.46 881 . . . . . . . . 9 (¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶) → ¬ 𝐵 = 𝐶)
288, 27syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐵 = 𝐶)
2928neqned 2953 . . . . . . 7 (𝜑𝐵𝐶)
3029ad2antrr 725 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝐶)
3114ad2antrr 725 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐷𝑃)
32 simplr 768 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝐷)
331, 2, 3, 23, 25, 31, 32tglinerflx1 28659 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
34 simpr 484 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
3533, 34eleqtrrd 2847 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐴𝐿𝐵))
361, 3, 2, 23, 26, 24, 35tglngne 28576 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝐵)
371, 2, 3, 23, 24, 25, 26, 30, 35, 36lnrot1 28649 . . . . 5 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐵𝐿𝐶))
3837orcd 872 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
398ad2antrr 725 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
4038, 39pm2.65da 816 . . 3 ((𝜑𝐶𝐷) → ¬ (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
4140neqned 2953 . 2 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
4222, 41pm2.61dane 3035 1 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  tglineinteq  28671  perpneq  28740
  Copyright terms: Public domain W3C validator