Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem1 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem1 34828
Description: Lemma for unbdqndv2 34830. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem1.a (𝜑𝐴 ∈ ℂ)
unbdqndv2lem1.b (𝜑𝐵 ∈ ℂ)
unbdqndv2lem1.c (𝜑𝐶 ∈ ℂ)
unbdqndv2lem1.d (𝜑𝐷 ∈ ℂ)
unbdqndv2lem1.e (𝜑𝐸 ∈ ℝ+)
unbdqndv2lem1.1 (𝜑𝐷 ≠ 0)
unbdqndv2lem1.2 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
Assertion
Ref Expression
unbdqndv2lem1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))

Proof of Theorem unbdqndv2lem1
StepHypRef Expression
1 unbdqndv2lem1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
2 unbdqndv2lem1.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11442 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 unbdqndv2lem1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
5 unbdqndv2lem1.1 . . . . 5 (𝜑𝐷 ≠ 0)
63, 4, 5absdivd 15271 . . . 4 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
76adantr 482 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
83abscld 15252 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
98adantr 482 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ∈ ℝ)
10 unbdqndv2lem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
111, 10subcld 11442 . . . . . . . 8 (𝜑 → (𝐴𝐶) ∈ ℂ)
1211abscld 15252 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐶)) ∈ ℝ)
132, 10subcld 11442 . . . . . . . 8 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413abscld 15252 . . . . . . 7 (𝜑 → (abs‘(𝐵𝐶)) ∈ ℝ)
1512, 14readdcld 11114 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1615adantr 482 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
17 2re 12157 . . . . . . . . 9 2 ∈ ℝ
1817a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
19 unbdqndv2lem1.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12882 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2118, 20remulcld 11115 . . . . . . 7 (𝜑 → (2 · 𝐸) ∈ ℝ)
224abscld 15252 . . . . . . 7 (𝜑 → (abs‘𝐷) ∈ ℝ)
2321, 22remulcld 11115 . . . . . 6 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
2423adantr 482 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
251, 2, 10abs3difd 15276 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
2610, 2abssubd 15269 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
2726oveq2d 7362 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) = ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2825, 27breqtrd 5126 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2928adantr 482 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
3012adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) ∈ ℝ)
3114adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) ∈ ℝ)
3220, 22remulcld 11115 . . . . . . . 8 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℝ)
3332adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (𝐸 · (abs‘𝐷)) ∈ ℝ)
34 pm2.45 880 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3534adantl 483 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3612, 32ltnled 11232 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3736adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3835, 37mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)))
39 pm2.46 881 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4039adantl 483 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4114, 32ltnled 11232 . . . . . . . . 9 (𝜑 → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4241adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4340, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)))
4430, 31, 33, 33, 38, 43lt2addd 11708 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4532recnd 11113 . . . . . . . . . 10 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℂ)
46452timesd 12326 . . . . . . . . 9 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4746eqcomd 2743 . . . . . . . 8 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = (2 · (𝐸 · (abs‘𝐷))))
4818recnd 11113 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
4920recnd 11113 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
5022recnd 11113 . . . . . . . . . 10 (𝜑 → (abs‘𝐷) ∈ ℂ)
5148, 49, 50mulassd 11108 . . . . . . . . 9 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) = (2 · (𝐸 · (abs‘𝐷))))
5251eqcomd 2743 . . . . . . . 8 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5347, 52eqtrd 2777 . . . . . . 7 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5453adantr 482 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5544, 54breqtrd 5126 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((2 · 𝐸) · (abs‘𝐷)))
569, 16, 24, 29, 55lelttrd 11243 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷)))
57 absgt0 15140 . . . . . . . . . 10 (𝐷 ∈ ℂ → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
584, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
595, 58mpbid 231 . . . . . . . 8 (𝜑 → 0 < (abs‘𝐷))
6022, 59jca 513 . . . . . . 7 (𝜑 → ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷)))
618, 21, 603jca 1128 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))))
62 ltdivmul2 11962 . . . . . 6 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6361, 62syl 17 . . . . 5 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6463adantr 482 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6556, 64mpbird 257 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸))
667, 65eqbrtrd 5122 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
67 unbdqndv2lem1.2 . . . 4 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
683, 4, 5divcld 11861 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝐷) ∈ ℂ)
6968abscld 15252 . . . . 5 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) ∈ ℝ)
7021, 69lenltd 11231 . . . 4 (𝜑 → ((2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)) ↔ ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸)))
7167, 70mpbid 231 . . 3 (𝜑 → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7271adantr 482 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7366, 72condan 816 1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941   class class class wbr 5100  cfv 6488  (class class class)co 7346  cc 10979  cr 10980  0cc0 10981   + caddc 10984   · cmul 10986   < clt 11119  cle 11120  cmin 11315   / cdiv 11742  2c2 12138  +crp 12840  abscabs 15049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-sup 9308  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-rp 12841  df-seq 13832  df-exp 13893  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051
This theorem is referenced by:  unbdqndv2lem2  34829
  Copyright terms: Public domain W3C validator