Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem1 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem1 36475
Description: Lemma for unbdqndv2 36477. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem1.a (𝜑𝐴 ∈ ℂ)
unbdqndv2lem1.b (𝜑𝐵 ∈ ℂ)
unbdqndv2lem1.c (𝜑𝐶 ∈ ℂ)
unbdqndv2lem1.d (𝜑𝐷 ∈ ℂ)
unbdqndv2lem1.e (𝜑𝐸 ∈ ℝ+)
unbdqndv2lem1.1 (𝜑𝐷 ≠ 0)
unbdqndv2lem1.2 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
Assertion
Ref Expression
unbdqndv2lem1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))

Proof of Theorem unbdqndv2lem1
StepHypRef Expression
1 unbdqndv2lem1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
2 unbdqndv2lem1.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11647 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 unbdqndv2lem1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
5 unbdqndv2lem1.1 . . . . 5 (𝜑𝐷 ≠ 0)
63, 4, 5absdivd 15504 . . . 4 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
76adantr 480 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
83abscld 15485 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ∈ ℝ)
10 unbdqndv2lem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
111, 10subcld 11647 . . . . . . . 8 (𝜑 → (𝐴𝐶) ∈ ℂ)
1211abscld 15485 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐶)) ∈ ℝ)
132, 10subcld 11647 . . . . . . . 8 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413abscld 15485 . . . . . . 7 (𝜑 → (abs‘(𝐵𝐶)) ∈ ℝ)
1512, 14readdcld 11319 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1615adantr 480 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
17 2re 12367 . . . . . . . . 9 2 ∈ ℝ
1817a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
19 unbdqndv2lem1.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 13099 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2118, 20remulcld 11320 . . . . . . 7 (𝜑 → (2 · 𝐸) ∈ ℝ)
224abscld 15485 . . . . . . 7 (𝜑 → (abs‘𝐷) ∈ ℝ)
2321, 22remulcld 11320 . . . . . 6 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
2423adantr 480 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
251, 2, 10abs3difd 15509 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
2610, 2abssubd 15502 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
2726oveq2d 7464 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) = ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2825, 27breqtrd 5192 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2928adantr 480 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
3012adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) ∈ ℝ)
3114adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) ∈ ℝ)
3220, 22remulcld 11320 . . . . . . . 8 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℝ)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (𝐸 · (abs‘𝐷)) ∈ ℝ)
34 pm2.45 880 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3534adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3612, 32ltnled 11437 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3835, 37mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)))
39 pm2.46 881 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4039adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4114, 32ltnled 11437 . . . . . . . . 9 (𝜑 → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4241adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4340, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)))
4430, 31, 33, 33, 38, 43lt2addd 11913 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4532recnd 11318 . . . . . . . . . 10 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℂ)
46452timesd 12536 . . . . . . . . 9 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4746eqcomd 2746 . . . . . . . 8 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = (2 · (𝐸 · (abs‘𝐷))))
4818recnd 11318 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
4920recnd 11318 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
5022recnd 11318 . . . . . . . . . 10 (𝜑 → (abs‘𝐷) ∈ ℂ)
5148, 49, 50mulassd 11313 . . . . . . . . 9 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) = (2 · (𝐸 · (abs‘𝐷))))
5251eqcomd 2746 . . . . . . . 8 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5347, 52eqtrd 2780 . . . . . . 7 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5453adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5544, 54breqtrd 5192 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((2 · 𝐸) · (abs‘𝐷)))
569, 16, 24, 29, 55lelttrd 11448 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷)))
57 absgt0 15373 . . . . . . . . . 10 (𝐷 ∈ ℂ → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
584, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
595, 58mpbid 232 . . . . . . . 8 (𝜑 → 0 < (abs‘𝐷))
6022, 59jca 511 . . . . . . 7 (𝜑 → ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷)))
618, 21, 603jca 1128 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))))
62 ltdivmul2 12172 . . . . . 6 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6361, 62syl 17 . . . . 5 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6463adantr 480 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6556, 64mpbird 257 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸))
667, 65eqbrtrd 5188 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
67 unbdqndv2lem1.2 . . . 4 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
683, 4, 5divcld 12070 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝐷) ∈ ℂ)
6968abscld 15485 . . . . 5 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) ∈ ℝ)
7021, 69lenltd 11436 . . . 4 (𝜑 → ((2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)) ↔ ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸)))
7167, 70mpbid 232 . . 3 (𝜑 → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7271adantr 480 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7366, 72condan 817 1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  +crp 13057  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  unbdqndv2lem2  36476
  Copyright terms: Public domain W3C validator