Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem1 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem1 34383
Description: Lemma for unbdqndv2 34385. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem1.a (𝜑𝐴 ∈ ℂ)
unbdqndv2lem1.b (𝜑𝐵 ∈ ℂ)
unbdqndv2lem1.c (𝜑𝐶 ∈ ℂ)
unbdqndv2lem1.d (𝜑𝐷 ∈ ℂ)
unbdqndv2lem1.e (𝜑𝐸 ∈ ℝ+)
unbdqndv2lem1.1 (𝜑𝐷 ≠ 0)
unbdqndv2lem1.2 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
Assertion
Ref Expression
unbdqndv2lem1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))

Proof of Theorem unbdqndv2lem1
StepHypRef Expression
1 unbdqndv2lem1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
2 unbdqndv2lem1.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11172 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 unbdqndv2lem1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
5 unbdqndv2lem1.1 . . . . 5 (𝜑𝐷 ≠ 0)
63, 4, 5absdivd 15002 . . . 4 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
76adantr 484 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
83abscld 14983 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
98adantr 484 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ∈ ℝ)
10 unbdqndv2lem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
111, 10subcld 11172 . . . . . . . 8 (𝜑 → (𝐴𝐶) ∈ ℂ)
1211abscld 14983 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐶)) ∈ ℝ)
132, 10subcld 11172 . . . . . . . 8 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413abscld 14983 . . . . . . 7 (𝜑 → (abs‘(𝐵𝐶)) ∈ ℝ)
1512, 14readdcld 10845 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1615adantr 484 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
17 2re 11887 . . . . . . . . 9 2 ∈ ℝ
1817a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
19 unbdqndv2lem1.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12611 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2118, 20remulcld 10846 . . . . . . 7 (𝜑 → (2 · 𝐸) ∈ ℝ)
224abscld 14983 . . . . . . 7 (𝜑 → (abs‘𝐷) ∈ ℝ)
2321, 22remulcld 10846 . . . . . 6 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
2423adantr 484 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
251, 2, 10abs3difd 15007 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
2610, 2abssubd 15000 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
2726oveq2d 7218 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) = ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2825, 27breqtrd 5069 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2928adantr 484 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
3012adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) ∈ ℝ)
3114adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) ∈ ℝ)
3220, 22remulcld 10846 . . . . . . . 8 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℝ)
3332adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (𝐸 · (abs‘𝐷)) ∈ ℝ)
34 pm2.45 882 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3534adantl 485 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3612, 32ltnled 10962 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3736adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3835, 37mpbird 260 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)))
39 pm2.46 883 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4039adantl 485 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4114, 32ltnled 10962 . . . . . . . . 9 (𝜑 → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4241adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4340, 42mpbird 260 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)))
4430, 31, 33, 33, 38, 43lt2addd 11438 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4532recnd 10844 . . . . . . . . . 10 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℂ)
46452timesd 12056 . . . . . . . . 9 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4746eqcomd 2740 . . . . . . . 8 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = (2 · (𝐸 · (abs‘𝐷))))
4818recnd 10844 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
4920recnd 10844 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
5022recnd 10844 . . . . . . . . . 10 (𝜑 → (abs‘𝐷) ∈ ℂ)
5148, 49, 50mulassd 10839 . . . . . . . . 9 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) = (2 · (𝐸 · (abs‘𝐷))))
5251eqcomd 2740 . . . . . . . 8 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5347, 52eqtrd 2774 . . . . . . 7 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5453adantr 484 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5544, 54breqtrd 5069 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((2 · 𝐸) · (abs‘𝐷)))
569, 16, 24, 29, 55lelttrd 10973 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷)))
57 absgt0 14871 . . . . . . . . . 10 (𝐷 ∈ ℂ → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
584, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
595, 58mpbid 235 . . . . . . . 8 (𝜑 → 0 < (abs‘𝐷))
6022, 59jca 515 . . . . . . 7 (𝜑 → ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷)))
618, 21, 603jca 1130 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))))
62 ltdivmul2 11692 . . . . . 6 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6361, 62syl 17 . . . . 5 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6463adantr 484 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6556, 64mpbird 260 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸))
667, 65eqbrtrd 5065 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
67 unbdqndv2lem1.2 . . . 4 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
683, 4, 5divcld 11591 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝐷) ∈ ℂ)
6968abscld 14983 . . . . 5 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) ∈ ℝ)
7021, 69lenltd 10961 . . . 4 (𝜑 → ((2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)) ↔ ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸)))
7167, 70mpbid 235 . . 3 (𝜑 → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7271adantr 484 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7366, 72condan 818 1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2935   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  2c2 11868  +crp 12569  abscabs 14780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782
This theorem is referenced by:  unbdqndv2lem2  34384
  Copyright terms: Public domain W3C validator