| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soasym | Structured version Visualization version GIF version | ||
| Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| soasym | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric 5579 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋))) | |
| 2 | pm2.46 882 | . 2 ⊢ (¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 Or wor 5548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-po 5549 df-so 5550 |
| This theorem is referenced by: fiinfg 9459 noresle 27616 nosupprefixmo 27619 noinfprefixmo 27620 nosupbnd1lem1 27627 nosupbnd1lem4 27630 nosupbnd2lem1 27634 nosupbnd2 27635 noinfbnd1lem1 27642 noinfbnd1lem4 27645 noinfbnd2lem1 27649 noinfbnd2 27650 sltasym 27667 or2expropbi 47039 prproropf1olem3 47510 |
| Copyright terms: Public domain | W3C validator |