| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soasym | Structured version Visualization version GIF version | ||
| Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| soasym | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric 5591 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋))) | |
| 2 | pm2.46 882 | . 2 ⊢ (¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-po 5561 df-so 5562 |
| This theorem is referenced by: fiinfg 9513 noresle 27661 nosupprefixmo 27664 noinfprefixmo 27665 nosupbnd1lem1 27672 nosupbnd1lem4 27675 nosupbnd2lem1 27679 nosupbnd2 27680 noinfbnd1lem1 27687 noinfbnd1lem4 27690 noinfbnd2lem1 27694 noinfbnd2 27695 sltasym 27712 or2expropbi 47063 prproropf1olem3 47519 |
| Copyright terms: Public domain | W3C validator |