MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soasym Structured version   Visualization version   GIF version

Theorem soasym 5594
Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
soasym ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))

Proof of Theorem soasym
StepHypRef Expression
1 sotric 5591 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌𝑌𝑅𝑋)))
2 pm2.46 882 . 2 (¬ (𝑋 = 𝑌𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋)
31, 2biimtrdi 253 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119   Or wor 5560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-po 5561  df-so 5562
This theorem is referenced by:  fiinfg  9513  noresle  27661  nosupprefixmo  27664  noinfprefixmo  27665  nosupbnd1lem1  27672  nosupbnd1lem4  27675  nosupbnd2lem1  27679  nosupbnd2  27680  noinfbnd1lem1  27687  noinfbnd1lem4  27690  noinfbnd2lem1  27694  noinfbnd2  27695  sltasym  27712  or2expropbi  47063  prproropf1olem3  47519
  Copyright terms: Public domain W3C validator