MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soasym Structured version   Visualization version   GIF version

Theorem soasym 5525
Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
soasym ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))

Proof of Theorem soasym
StepHypRef Expression
1 sotric 5522 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌𝑌𝑅𝑋)))
2 pm2.46 879 . 2 (¬ (𝑋 = 𝑌𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋)
31, 2syl6bi 252 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495
This theorem is referenced by:  fiinfg  9188  noresle  33827  nosupprefixmo  33830  noinfprefixmo  33831  nosupbnd1lem1  33838  nosupbnd1lem4  33841  nosupbnd2lem1  33845  nosupbnd2  33846  noinfbnd1lem1  33853  noinfbnd1lem4  33856  noinfbnd2lem1  33860  noinfbnd2  33861  sltasym  33878  or2expropbi  44415  prproropf1olem3  44845
  Copyright terms: Public domain W3C validator