| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soasym | Structured version Visualization version GIF version | ||
| Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| soasym | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric 5602 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋))) | |
| 2 | pm2.46 882 | . 2 ⊢ (¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 Or wor 5571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-po 5572 df-so 5573 |
| This theorem is referenced by: fiinfg 9521 noresle 27679 nosupprefixmo 27682 noinfprefixmo 27683 nosupbnd1lem1 27690 nosupbnd1lem4 27693 nosupbnd2lem1 27697 nosupbnd2 27698 noinfbnd1lem1 27705 noinfbnd1lem4 27708 noinfbnd2lem1 27712 noinfbnd2 27713 sltasym 27730 or2expropbi 47019 prproropf1olem3 47465 |
| Copyright terms: Public domain | W3C validator |