![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soasym | Structured version Visualization version GIF version |
Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
Ref | Expression |
---|---|
soasym | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotric 5616 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋))) | |
2 | pm2.46 880 | . 2 ⊢ (¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋) | |
3 | 1, 2 | biimtrdi 252 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 Or wor 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-po 5588 df-so 5589 |
This theorem is referenced by: fiinfg 9500 noresle 27543 nosupprefixmo 27546 noinfprefixmo 27547 nosupbnd1lem1 27554 nosupbnd1lem4 27557 nosupbnd2lem1 27561 nosupbnd2 27562 noinfbnd1lem1 27569 noinfbnd1lem4 27572 noinfbnd2lem1 27576 noinfbnd2 27577 sltasym 27594 or2expropbi 46203 prproropf1olem3 46632 |
Copyright terms: Public domain | W3C validator |