| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soasym | Structured version Visualization version GIF version | ||
| Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| soasym | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric 5561 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋))) | |
| 2 | pm2.46 882 | . 2 ⊢ (¬ (𝑋 = 𝑌 ∨ 𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 Or wor 5530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-po 5531 df-so 5532 |
| This theorem is referenced by: fiinfg 9410 noresle 27625 nosupprefixmo 27628 noinfprefixmo 27629 nosupbnd1lem1 27636 nosupbnd1lem4 27639 nosupbnd2lem1 27643 nosupbnd2 27644 noinfbnd1lem1 27651 noinfbnd1lem4 27654 noinfbnd2lem1 27658 noinfbnd2 27659 sltasym 27676 or2expropbi 47019 prproropf1olem3 47490 |
| Copyright terms: Public domain | W3C validator |