MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soasym Structured version   Visualization version   GIF version

Theorem soasym 5579
Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
soasym ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))

Proof of Theorem soasym
StepHypRef Expression
1 sotric 5576 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 ↔ ¬ (𝑋 = 𝑌𝑌𝑅𝑋)))
2 pm2.46 882 . 2 (¬ (𝑋 = 𝑌𝑌𝑅𝑋) → ¬ 𝑌𝑅𝑋)
31, 2biimtrdi 253 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107   Or wor 5545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-po 5546  df-so 5547
This theorem is referenced by:  fiinfg  9452  noresle  27609  nosupprefixmo  27612  noinfprefixmo  27613  nosupbnd1lem1  27620  nosupbnd1lem4  27623  nosupbnd2lem1  27627  nosupbnd2  27628  noinfbnd1lem1  27635  noinfbnd1lem4  27638  noinfbnd2lem1  27642  noinfbnd2  27643  sltasym  27660  or2expropbi  47035  prproropf1olem3  47506
  Copyright terms: Public domain W3C validator