Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61da3ne | Structured version Visualization version GIF version |
Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61da3ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61da3ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
pm2.61da3ne.3 | ⊢ ((𝜑 ∧ 𝐸 = 𝐹) → 𝜓) |
pm2.61da3ne.4 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹)) → 𝜓) |
Ref | Expression |
---|---|
pm2.61da3ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61da3ne.2 | . 2 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
2 | pm2.61da3ne.3 | . 2 ⊢ ((𝜑 ∧ 𝐸 = 𝐹) → 𝜓) | |
3 | pm2.61da3ne.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
4 | 3 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) → 𝜓)) |
5 | pm2.61da3ne.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹)) → 𝜓) | |
6 | 5 | 3exp2 1353 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → (𝐶 ≠ 𝐷 → (𝐸 ≠ 𝐹 → 𝜓)))) |
7 | 6 | imp4b 422 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → ((𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) → 𝜓)) |
8 | 4, 7 | pm2.61dane 3032 | . . 3 ⊢ (𝜑 → ((𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) → 𝜓)) |
9 | 8 | imp 407 | . 2 ⊢ ((𝜑 ∧ (𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹)) → 𝜓) |
10 | 1, 2, 9 | pm2.61da2ne 3033 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ne 2944 |
This theorem is referenced by: trljco 38754 dvh4dimN 39461 |
Copyright terms: Public domain | W3C validator |