![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3029 onmindif 6478 oaordex 8595 pssnn 9207 alephval3 10148 dfac5 10167 dfac2b 10169 coftr 10311 zorn2lem6 10539 addcanpi 10937 mulcanpi 10938 ltmpi 10942 ltexprlem6 11079 axpre-sup 11207 bndndx 12523 dmdprdd 20034 lssssr 20970 coe1fzgsumdlem 22323 evl1gsumdlem 22376 1stcrest 23477 upgrreslem 29336 umgrreslem 29337 mdsymlem3 32434 mdsymlem6 32437 sumdmdlem 32447 mclsax 35554 mclsppslem 35568 disjlem17 38781 prtlem17 38858 cvratlem 39404 paddidm 39824 pmodlem2 39830 pclfinclN 39933 onexoegt 43233 icceuelpart 47361 |
Copyright terms: Public domain | W3C validator |