Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3035 onmindif 6352 oaordex 8365 pssnn 8916 pssnnOLD 9001 alephval3 9850 dfac5 9868 dfac2b 9870 coftr 10013 zorn2lem6 10241 addcanpi 10639 mulcanpi 10640 ltmpi 10644 ltexprlem6 10781 axpre-sup 10909 bndndx 12215 dmdprdd 19583 lssssr 20196 coe1fzgsumdlem 21453 evl1gsumdlem 21503 1stcrest 22585 upgrreslem 27652 umgrreslem 27653 mdsymlem3 30746 mdsymlem6 30749 sumdmdlem 30759 mclsax 33510 mclsppslem 33524 prtlem17 36869 cvratlem 37414 paddidm 37834 pmodlem2 37840 pclfinclN 37943 icceuelpart 44840 |
Copyright terms: Public domain | W3C validator |