Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 424. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 408 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 412 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: imp4a 424 imp43 429 imp5g 443 pm2.61da3ne 3032 onmindif 6372 oaordex 8420 pssnn 8989 pssnnOLD 9084 alephval3 9912 dfac5 9930 dfac2b 9932 coftr 10075 zorn2lem6 10303 addcanpi 10701 mulcanpi 10702 ltmpi 10706 ltexprlem6 10843 axpre-sup 10971 bndndx 12278 dmdprdd 19647 lssssr 20260 coe1fzgsumdlem 21517 evl1gsumdlem 21567 1stcrest 22649 upgrreslem 27716 umgrreslem 27717 mdsymlem3 30812 mdsymlem6 30815 sumdmdlem 30825 mclsax 33576 mclsppslem 33590 prtlem17 36932 cvratlem 37477 paddidm 37897 pmodlem2 37903 pclfinclN 38006 icceuelpart 44946 |
Copyright terms: Public domain | W3C validator |