| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3014 onmindif 6426 oaordex 8522 pssnn 9132 alephval3 10063 dfac5 10082 dfac2b 10084 coftr 10226 zorn2lem6 10454 addcanpi 10852 mulcanpi 10853 ltmpi 10857 ltexprlem6 10994 axpre-sup 11122 bndndx 12441 dmdprdd 19931 lssssr 20860 coe1fzgsumdlem 22190 evl1gsumdlem 22243 1stcrest 23340 upgrreslem 29231 umgrreslem 29232 mdsymlem3 32334 mdsymlem6 32337 sumdmdlem 32347 mclsax 35556 mclsppslem 35570 disjlem17 38791 prtlem17 38869 cvratlem 39415 paddidm 39835 pmodlem2 39841 pclfinclN 39944 onexoegt 43233 icceuelpart 47437 |
| Copyright terms: Public domain | W3C validator |