MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4b Structured version   Visualization version   GIF version

Theorem imp4b 421
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4b ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Proof of Theorem imp4b
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32impd 410 1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp4a  422  imp43  427  imp5g  441  pm2.61da3ne  3017  onmindif  6395  oaordex  8468  pssnn  9073  alephval3  9996  dfac5  10015  dfac2b  10017  coftr  10159  zorn2lem6  10387  addcanpi  10785  mulcanpi  10786  ltmpi  10790  ltexprlem6  10927  axpre-sup  11055  bndndx  12375  dmdprdd  19908  lssssr  20882  coe1fzgsumdlem  22213  evl1gsumdlem  22266  1stcrest  23363  upgrreslem  29277  umgrreslem  29278  mdsymlem3  32377  mdsymlem6  32380  sumdmdlem  32390  mclsax  35605  mclsppslem  35619  disjlem17  38837  prtlem17  38915  cvratlem  39460  paddidm  39880  pmodlem2  39886  pclfinclN  39989  onexoegt  43277  icceuelpart  47467
  Copyright terms: Public domain W3C validator