![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 423. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 411 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imp4a 423 imp43 428 imp5g 442 pm2.61da3ne 3031 onmindif 6456 oaordex 8557 pssnn 9167 pssnnOLD 9264 alephval3 10104 dfac5 10122 dfac2b 10124 coftr 10267 zorn2lem6 10495 addcanpi 10893 mulcanpi 10894 ltmpi 10898 ltexprlem6 11035 axpre-sup 11163 bndndx 12470 dmdprdd 19868 lssssr 20563 coe1fzgsumdlem 21824 evl1gsumdlem 21874 1stcrest 22956 upgrreslem 28558 umgrreslem 28559 mdsymlem3 31653 mdsymlem6 31656 sumdmdlem 31666 mclsax 34555 mclsppslem 34569 disjlem17 37664 prtlem17 37741 cvratlem 38287 paddidm 38707 pmodlem2 38713 pclfinclN 38816 onexoegt 41983 icceuelpart 46094 |
Copyright terms: Public domain | W3C validator |