![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3037 onmindif 6487 oaordex 8614 pssnn 9234 alephval3 10179 dfac5 10198 dfac2b 10200 coftr 10342 zorn2lem6 10570 addcanpi 10968 mulcanpi 10969 ltmpi 10973 ltexprlem6 11110 axpre-sup 11238 bndndx 12552 dmdprdd 20043 lssssr 20975 coe1fzgsumdlem 22328 evl1gsumdlem 22381 1stcrest 23482 upgrreslem 29339 umgrreslem 29340 mdsymlem3 32437 mdsymlem6 32440 sumdmdlem 32450 mclsax 35537 mclsppslem 35551 disjlem17 38755 prtlem17 38832 cvratlem 39378 paddidm 39798 pmodlem2 39804 pclfinclN 39907 onexoegt 43205 icceuelpart 47310 |
Copyright terms: Public domain | W3C validator |