| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3021 onmindif 6446 oaordex 8570 pssnn 9182 alephval3 10124 dfac5 10143 dfac2b 10145 coftr 10287 zorn2lem6 10515 addcanpi 10913 mulcanpi 10914 ltmpi 10918 ltexprlem6 11055 axpre-sup 11183 bndndx 12500 dmdprdd 19982 lssssr 20911 coe1fzgsumdlem 22241 evl1gsumdlem 22294 1stcrest 23391 upgrreslem 29283 umgrreslem 29284 mdsymlem3 32386 mdsymlem6 32389 sumdmdlem 32399 mclsax 35591 mclsppslem 35605 disjlem17 38817 prtlem17 38894 cvratlem 39440 paddidm 39860 pmodlem2 39866 pclfinclN 39969 onexoegt 43268 icceuelpart 47450 |
| Copyright terms: Public domain | W3C validator |