![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 424. (Revised by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp 408 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | impd 412 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: imp4a 424 imp43 429 imp5g 443 pm2.61da3ne 3032 onmindif 6457 oaordex 8558 pssnn 9168 pssnnOLD 9265 alephval3 10105 dfac5 10123 dfac2b 10125 coftr 10268 zorn2lem6 10496 addcanpi 10894 mulcanpi 10895 ltmpi 10899 ltexprlem6 11036 axpre-sup 11164 bndndx 12471 dmdprdd 19869 lssssr 20564 coe1fzgsumdlem 21825 evl1gsumdlem 21875 1stcrest 22957 upgrreslem 28561 umgrreslem 28562 mdsymlem3 31658 mdsymlem6 31661 sumdmdlem 31671 mclsax 34560 mclsppslem 34574 disjlem17 37669 prtlem17 37746 cvratlem 38292 paddidm 38712 pmodlem2 38718 pclfinclN 38821 onexoegt 41993 icceuelpart 46104 |
Copyright terms: Public domain | W3C validator |