| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3014 onmindif 6414 oaordex 8499 pssnn 9109 alephval3 10039 dfac5 10058 dfac2b 10060 coftr 10202 zorn2lem6 10430 addcanpi 10828 mulcanpi 10829 ltmpi 10833 ltexprlem6 10970 axpre-sup 11098 bndndx 12417 dmdprdd 19907 lssssr 20836 coe1fzgsumdlem 22166 evl1gsumdlem 22219 1stcrest 23316 upgrreslem 29207 umgrreslem 29208 mdsymlem3 32307 mdsymlem6 32310 sumdmdlem 32320 mclsax 35529 mclsppslem 35543 disjlem17 38764 prtlem17 38842 cvratlem 39388 paddidm 39808 pmodlem2 39814 pclfinclN 39917 onexoegt 43206 icceuelpart 47410 |
| Copyright terms: Public domain | W3C validator |