| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3015 onmindif 6429 oaordex 8525 pssnn 9138 alephval3 10070 dfac5 10089 dfac2b 10091 coftr 10233 zorn2lem6 10461 addcanpi 10859 mulcanpi 10860 ltmpi 10864 ltexprlem6 11001 axpre-sup 11129 bndndx 12448 dmdprdd 19938 lssssr 20867 coe1fzgsumdlem 22197 evl1gsumdlem 22250 1stcrest 23347 upgrreslem 29238 umgrreslem 29239 mdsymlem3 32341 mdsymlem6 32344 sumdmdlem 32354 mclsax 35563 mclsppslem 35577 disjlem17 38798 prtlem17 38876 cvratlem 39422 paddidm 39842 pmodlem2 39848 pclfinclN 39951 onexoegt 43240 icceuelpart 47441 |
| Copyright terms: Public domain | W3C validator |