| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3017 onmindif 6395 oaordex 8468 pssnn 9073 alephval3 9996 dfac5 10015 dfac2b 10017 coftr 10159 zorn2lem6 10387 addcanpi 10785 mulcanpi 10786 ltmpi 10790 ltexprlem6 10927 axpre-sup 11055 bndndx 12375 dmdprdd 19908 lssssr 20882 coe1fzgsumdlem 22213 evl1gsumdlem 22266 1stcrest 23363 upgrreslem 29277 umgrreslem 29278 mdsymlem3 32377 mdsymlem6 32380 sumdmdlem 32390 mclsax 35605 mclsppslem 35619 disjlem17 38837 prtlem17 38915 cvratlem 39460 paddidm 39880 pmodlem2 39886 pclfinclN 39989 onexoegt 43277 icceuelpart 47467 |
| Copyright terms: Public domain | W3C validator |