| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4b | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp4b | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | impd 410 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp4a 422 imp43 427 imp5g 441 pm2.61da3ne 3014 onmindif 6401 oaordex 8476 pssnn 9082 alephval3 10004 dfac5 10023 dfac2b 10025 coftr 10167 zorn2lem6 10395 addcanpi 10793 mulcanpi 10794 ltmpi 10798 ltexprlem6 10935 axpre-sup 11063 bndndx 12383 dmdprdd 19880 lssssr 20857 coe1fzgsumdlem 22188 evl1gsumdlem 22241 1stcrest 23338 upgrreslem 29249 umgrreslem 29250 mdsymlem3 32349 mdsymlem6 32352 sumdmdlem 32362 mclsax 35542 mclsppslem 35556 disjlem17 38777 prtlem17 38855 cvratlem 39400 paddidm 39820 pmodlem2 39826 pclfinclN 39929 onexoegt 43217 icceuelpart 47420 |
| Copyright terms: Public domain | W3C validator |