MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4b Structured version   Visualization version   GIF version

Theorem imp4b 421
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 422. (Revised by Wolf Lammen, 19-Jul-2021.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4b ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Proof of Theorem imp4b
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp 406 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32impd 410 1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp4a  422  imp43  427  imp5g  441  pm2.61da3ne  3015  onmindif  6429  oaordex  8525  pssnn  9138  alephval3  10070  dfac5  10089  dfac2b  10091  coftr  10233  zorn2lem6  10461  addcanpi  10859  mulcanpi  10860  ltmpi  10864  ltexprlem6  11001  axpre-sup  11129  bndndx  12448  dmdprdd  19938  lssssr  20867  coe1fzgsumdlem  22197  evl1gsumdlem  22250  1stcrest  23347  upgrreslem  29238  umgrreslem  29239  mdsymlem3  32341  mdsymlem6  32344  sumdmdlem  32354  mclsax  35563  mclsppslem  35577  disjlem17  38798  prtlem17  38876  cvratlem  39422  paddidm  39842  pmodlem2  39848  pclfinclN  39951  onexoegt  43240  icceuelpart  47441
  Copyright terms: Public domain W3C validator