Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   GIF version

Theorem trljco 40075
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j = (join‘𝐾)
trljco.h 𝐻 = (LHyp‘𝐾)
trljco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5857 . . . . 5 (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
2 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3 trljco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 trljco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 39459 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1of 6833 . . . . . 6 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
8 fcoi2 6766 . . . . . 6 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
96, 7, 83syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
101, 9sylan9eqr 2793 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐺)
1110fveq2d 6895 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
1211oveq2d 7428 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
13 simp1l 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ HL)
1413hllatd 38698 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ Lat)
15 trljco.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
162, 3, 4, 15trlcl 39499 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
18 trljco.j . . . . . . 7 = (join‘𝐾)
192, 18latjidm 18425 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
2014, 17, 19syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
21 hlol 38695 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2213, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ OL)
23 eqid 2731 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
242, 18, 23olj01 38559 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2522, 17, 24syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2620, 25eqtr4d 2774 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
2726adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
28 coeq2 5858 . . . . . 6 (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
292, 3, 4ltrn1o 39459 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
30293adant3 1131 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6833 . . . . . . 7 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6765 . . . . . . 7 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3428, 33sylan9eqr 2793 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐹)
3534fveq2d 6895 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐹))
3635oveq2d 7428 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐹)))
372, 23, 3, 4, 15trlid0b 39513 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
38373adant2 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
3938biimpa 476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (0.‘𝐾))
4039oveq2d 7428 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐺)) = ((𝑅𝐹) (0.‘𝐾)))
4127, 36, 403eqtr4d 2781 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
42 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
4314adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ Lat)
44 simp1 1135 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
453, 4ltrnco 40054 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
462, 3, 4, 15trlcl 39499 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
4744, 45, 46syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
482, 18latjcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
4914, 17, 47, 48syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
5049adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
512, 3, 4, 15trlcl 39499 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
52513adant2 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
532, 18latjcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5414, 17, 52, 53syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5554adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
562, 42, 18latlej1 18411 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5714, 17, 52, 56syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5842, 18, 3, 4, 15trlco 40062 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
592, 42, 18latjle12 18413 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6014, 17, 47, 54, 59syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6157, 58, 60mpbi2and 709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
6261adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
63 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
6463oveq2d 7428 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (𝑅𝐺)))
652, 42, 18latlej1 18411 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6614, 17, 47, 65syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6720, 66eqbrtrd 5170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6867adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6964, 68eqbrtrrd 5172 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
702, 42, 43, 50, 55, 62, 69latasymd 18408 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
7161adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
72 simpl1l 1223 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
73 simpl1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 simpl2 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
75 simpr1 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
76 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
772, 76, 3, 4, 15trlnidat 39508 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
7873, 74, 75, 77syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
79 simpl3 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
8074, 79jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑇𝐺𝑇))
81 simpr3 1195 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
8276, 3, 4, 15trlcoat 40058 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
8373, 80, 81, 82syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
84 simpr2 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾)))
852, 3, 4, 15trlcone 40063 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
8673, 80, 81, 84, 85syl112anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
872, 76, 3, 4, 15trlnidat 39508 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8873, 79, 84, 87syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8942, 18, 76ps-1 38812 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))) ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐺) ∈ (Atoms‘𝐾))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9072, 78, 83, 86, 78, 88, 89syl132anc 1387 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9171, 90mpbid 231 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
9212, 41, 70, 91pm2.61da3ne 3030 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939   class class class wbr 5148   I cid 5573  cres 5678  ccom 5680  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  joincjn 18274  0.cp0 18386  Latclat 18394  OLcol 38508  Atomscatm 38597  HLchlt 38684  LHypclh 39319  LTrncltrn 39436  trLctrl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-riotaBAD 38287
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-undef 8264  df-map 8828  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38510  df-ol 38512  df-oml 38513  df-covers 38600  df-ats 38601  df-atl 38632  df-cvlat 38656  df-hlat 38685  df-llines 38833  df-lplanes 38834  df-lvols 38835  df-lines 38836  df-psubsp 38838  df-pmap 38839  df-padd 39131  df-lhyp 39323  df-laut 39324  df-ldil 39439  df-ltrn 39440  df-trl 39494
This theorem is referenced by:  trljco2  40076  cdlemkid1  40257
  Copyright terms: Public domain W3C validator