Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   GIF version

Theorem trljco 37891
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j = (join‘𝐾)
trljco.h 𝐻 = (LHyp‘𝐾)
trljco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5728 . . . . 5 (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
2 eqid 2821 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3 trljco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 trljco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 37275 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1of 6615 . . . . . 6 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
8 fcoi2 6553 . . . . . 6 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
96, 7, 83syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
101, 9sylan9eqr 2878 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐺)
1110fveq2d 6674 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
1211oveq2d 7172 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
13 simp1l 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ HL)
1413hllatd 36515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ Lat)
15 trljco.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
162, 3, 4, 15trlcl 37315 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
18 trljco.j . . . . . . 7 = (join‘𝐾)
192, 18latjidm 17684 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
2014, 17, 19syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
21 hlol 36512 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2213, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ OL)
23 eqid 2821 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
242, 18, 23olj01 36376 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2522, 17, 24syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2620, 25eqtr4d 2859 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
2726adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
28 coeq2 5729 . . . . . 6 (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
292, 3, 4ltrn1o 37275 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
30293adant3 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6615 . . . . . . 7 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6552 . . . . . . 7 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3428, 33sylan9eqr 2878 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐹)
3534fveq2d 6674 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐹))
3635oveq2d 7172 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐹)))
372, 23, 3, 4, 15trlid0b 37329 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
38373adant2 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
3938biimpa 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (0.‘𝐾))
4039oveq2d 7172 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐺)) = ((𝑅𝐹) (0.‘𝐾)))
4127, 36, 403eqtr4d 2866 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
42 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
4314adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ Lat)
44 simp1 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
453, 4ltrnco 37870 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
462, 3, 4, 15trlcl 37315 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
4744, 45, 46syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
482, 18latjcl 17661 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
4914, 17, 47, 48syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
5049adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
512, 3, 4, 15trlcl 37315 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
52513adant2 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
532, 18latjcl 17661 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5414, 17, 52, 53syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5554adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
562, 42, 18latlej1 17670 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5714, 17, 52, 56syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5842, 18, 3, 4, 15trlco 37878 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
592, 42, 18latjle12 17672 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6014, 17, 47, 54, 59syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6157, 58, 60mpbi2and 710 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
6261adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
63 simpr 487 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
6463oveq2d 7172 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (𝑅𝐺)))
652, 42, 18latlej1 17670 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6614, 17, 47, 65syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6720, 66eqbrtrd 5088 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6867adantr 483 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6964, 68eqbrtrrd 5090 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
702, 42, 43, 50, 55, 62, 69latasymd 17667 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
7161adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
72 simpl1l 1220 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
73 simpl1 1187 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 simpl2 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
75 simpr1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
76 eqid 2821 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
772, 76, 3, 4, 15trlnidat 37324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
7873, 74, 75, 77syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
79 simpl3 1189 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
8074, 79jca 514 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑇𝐺𝑇))
81 simpr3 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
8276, 3, 4, 15trlcoat 37874 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
8373, 80, 81, 82syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
84 simpr2 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾)))
852, 3, 4, 15trlcone 37879 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
8673, 80, 81, 84, 85syl112anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
872, 76, 3, 4, 15trlnidat 37324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8873, 79, 84, 87syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8942, 18, 76ps-1 36628 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))) ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐺) ∈ (Atoms‘𝐾))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9072, 78, 83, 86, 78, 88, 89syl132anc 1384 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9171, 90mpbid 234 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
9212, 41, 70, 91pm2.61da3ne 3106 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066   I cid 5459  cres 5557  ccom 5559  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  0.cp0 17647  Latclat 17655  OLcol 36325  Atomscatm 36414  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-undef 7939  df-map 8408  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310
This theorem is referenced by:  trljco2  37892  cdlemkid1  38073
  Copyright terms: Public domain W3C validator