Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   GIF version

Theorem trljco 36696
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j = (join‘𝐾)
trljco.h 𝐻 = (LHyp‘𝐾)
trljco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5448 . . . . 5 (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
2 eqid 2765 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3 trljco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 trljco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 36080 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1161 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1of 6320 . . . . . 6 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
8 fcoi2 6261 . . . . . 6 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
96, 7, 83syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
101, 9sylan9eqr 2821 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐺)
1110fveq2d 6379 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
1211oveq2d 6858 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
13 simp1l 1254 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ HL)
1413hllatd 35320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ Lat)
15 trljco.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
162, 3, 4, 15trlcl 36120 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1162 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
18 trljco.j . . . . . . 7 = (join‘𝐾)
192, 18latjidm 17340 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
2014, 17, 19syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
21 hlol 35317 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2213, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ OL)
23 eqid 2765 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
242, 18, 23olj01 35181 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2522, 17, 24syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2620, 25eqtr4d 2802 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
2726adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
28 coeq2 5449 . . . . . 6 (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
292, 3, 4ltrn1o 36080 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
30293adant3 1162 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6320 . . . . . . 7 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6260 . . . . . . 7 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3428, 33sylan9eqr 2821 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐹)
3534fveq2d 6379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐹))
3635oveq2d 6858 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐹)))
372, 23, 3, 4, 15trlid0b 36134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
38373adant2 1161 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
3938biimpa 468 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (0.‘𝐾))
4039oveq2d 6858 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐺)) = ((𝑅𝐹) (0.‘𝐾)))
4127, 36, 403eqtr4d 2809 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
42 eqid 2765 . . 3 (le‘𝐾) = (le‘𝐾)
4314adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ Lat)
44 simp1 1166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
453, 4ltrnco 36675 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
462, 3, 4, 15trlcl 36120 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
4744, 45, 46syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
482, 18latjcl 17317 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
4914, 17, 47, 48syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
5049adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
512, 3, 4, 15trlcl 36120 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
52513adant2 1161 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
532, 18latjcl 17317 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5414, 17, 52, 53syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5554adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
562, 42, 18latlej1 17326 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5714, 17, 52, 56syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5842, 18, 3, 4, 15trlco 36683 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
592, 42, 18latjle12 17328 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6014, 17, 47, 54, 59syl13anc 1491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6157, 58, 60mpbi2and 703 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
6261adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
63 simpr 477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
6463oveq2d 6858 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (𝑅𝐺)))
652, 42, 18latlej1 17326 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6614, 17, 47, 65syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6720, 66eqbrtrd 4831 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6867adantr 472 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6964, 68eqbrtrrd 4833 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
702, 42, 43, 50, 55, 62, 69latasymd 17323 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
7161adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
72 simpl1l 1293 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
73 simpl1 1242 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 simpl2 1244 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
75 simpr1 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
76 eqid 2765 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
772, 76, 3, 4, 15trlnidat 36129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
7873, 74, 75, 77syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
79 simpl3 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
8074, 79jca 507 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑇𝐺𝑇))
81 simpr3 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
8276, 3, 4, 15trlcoat 36679 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
8373, 80, 81, 82syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
84 simpr2 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾)))
852, 3, 4, 15trlcone 36684 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
8673, 80, 81, 84, 85syl112anc 1493 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
872, 76, 3, 4, 15trlnidat 36129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8873, 79, 84, 87syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8942, 18, 76ps-1 35433 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))) ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐺) ∈ (Atoms‘𝐾))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9072, 78, 83, 86, 78, 88, 89syl132anc 1507 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9171, 90mpbid 223 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
9212, 41, 70, 91pm2.61da3ne 3026 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809   I cid 5184  cres 5279  ccom 5281  wf 6064  1-1-ontowf1o 6067  cfv 6068  (class class class)co 6842  Basecbs 16130  lecple 16221  joincjn 17210  0.cp0 17303  Latclat 17311  OLcol 35130  Atomscatm 35219  HLchlt 35306  LHypclh 35940  LTrncltrn 36057  trLctrl 36114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-riotaBAD 34909
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-undef 7602  df-map 8062  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-p1 17306  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-llines 35454  df-lplanes 35455  df-lvols 35456  df-lines 35457  df-psubsp 35459  df-pmap 35460  df-padd 35752  df-lhyp 35944  df-laut 35945  df-ldil 36060  df-ltrn 36061  df-trl 36115
This theorem is referenced by:  trljco2  36697  cdlemkid1  36878
  Copyright terms: Public domain W3C validator