Proof of Theorem trljco
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | coeq1 5868 | . . . . 5
⊢ (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺)) | 
| 2 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 3 |  | trljco.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 |  | trljco.t | . . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 5 | 2, 3, 4 | ltrn1o 40126 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 6 | 5 | 3adant2 1132 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 7 |  | f1of 6848 | . . . . . 6
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 8 |  | fcoi2 6783 | . . . . . 6
⊢ (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺) | 
| 9 | 6, 7, 8 | 3syl 18 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺) | 
| 10 | 1, 9 | sylan9eqr 2799 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ 𝐺) = 𝐺) | 
| 11 | 10 | fveq2d 6910 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹 ∘ 𝐺)) = (𝑅‘𝐺)) | 
| 12 | 11 | oveq2d 7447 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 13 |  | simp1l 1198 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ HL) | 
| 14 | 13 | hllatd 39365 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ Lat) | 
| 15 |  | trljco.r | . . . . . . . 8
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 16 | 2, 3, 4, 15 | trlcl 40166 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) | 
| 17 | 16 | 3adant3 1133 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) | 
| 18 |  | trljco.j | . . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 19 | 2, 18 | latjidm 18507 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹)) = (𝑅‘𝐹)) | 
| 20 | 14, 17, 19 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹)) = (𝑅‘𝐹)) | 
| 21 |  | hlol 39362 | . . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 22 | 13, 21 | syl 17 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ OL) | 
| 23 |  | eqid 2737 | . . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 24 | 2, 18, 23 | olj01 39226 | . . . . . 6
⊢ ((𝐾 ∈ OL ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (0.‘𝐾)) = (𝑅‘𝐹)) | 
| 25 | 22, 17, 24 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (0.‘𝐾)) = (𝑅‘𝐹)) | 
| 26 | 20, 25 | eqtr4d 2780 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹)) = ((𝑅‘𝐹) ∨ (0.‘𝐾))) | 
| 27 | 26 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹)) = ((𝑅‘𝐹) ∨ (0.‘𝐾))) | 
| 28 |  | coeq2 5869 | . . . . . 6
⊢ (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾)))) | 
| 29 | 2, 3, 4 | ltrn1o 40126 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 30 | 29 | 3adant3 1133 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 31 |  | f1of 6848 | . . . . . . 7
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 32 |  | fcoi1 6782 | . . . . . . 7
⊢ (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹) | 
| 33 | 30, 31, 32 | 3syl 18 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹) | 
| 34 | 28, 33 | sylan9eqr 2799 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ 𝐺) = 𝐹) | 
| 35 | 34 | fveq2d 6910 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹 ∘ 𝐺)) = (𝑅‘𝐹)) | 
| 36 | 35 | oveq2d 7447 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐹))) | 
| 37 | 2, 23, 3, 4, 15 | trlid0b 40180 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘𝐺) = (0.‘𝐾))) | 
| 38 | 37 | 3adant2 1132 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘𝐺) = (0.‘𝐾))) | 
| 39 | 38 | biimpa 476 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘𝐺) = (0.‘𝐾)) | 
| 40 | 39 | oveq2d 7447 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐹) ∨ (0.‘𝐾))) | 
| 41 | 27, 36, 40 | 3eqtr4d 2787 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 42 |  | eqid 2737 | . . 3
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 43 | 14 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → 𝐾 ∈ Lat) | 
| 44 |  | simp1 1137 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 45 | 3, 4 | ltrnco 40721 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) | 
| 46 | 2, 3, 4, 15 | trlcl 40166 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Base‘𝐾)) | 
| 47 | 44, 45, 46 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Base‘𝐾)) | 
| 48 | 2, 18 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) ∈ (Base‘𝐾)) | 
| 49 | 14, 17, 47, 48 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) ∈ (Base‘𝐾)) | 
| 50 | 49 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) ∈ (Base‘𝐾)) | 
| 51 | 2, 3, 4, 15 | trlcl 40166 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) | 
| 52 | 51 | 3adant2 1132 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) | 
| 53 | 2, 18 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐺) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∈ (Base‘𝐾)) | 
| 54 | 14, 17, 52, 53 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∈ (Base‘𝐾)) | 
| 55 | 54 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∈ (Base‘𝐾)) | 
| 56 | 2, 42, 18 | latlej1 18493 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐺) ∈ (Base‘𝐾)) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 57 | 14, 17, 52, 56 | syl3anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 58 | 42, 18, 3, 4, 15 | trlco 40729 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 59 | 2, 42, 18 | latjle12 18495 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∈ (Base‘𝐾))) → (((𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∧ (𝑅‘(𝐹 ∘ 𝐺))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)))) | 
| 60 | 14, 17, 47, 54, 59 | syl13anc 1374 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (((𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ∧ (𝑅‘(𝐹 ∘ 𝐺))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)))) | 
| 61 | 57, 58, 60 | mpbi2and 712 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 62 | 61 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 63 |  | simpr 484 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → (𝑅‘𝐹) = (𝑅‘𝐺)) | 
| 64 | 63 | oveq2d 7447 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹)) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 65 | 2, 42, 18 | latlej1 18493 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Base‘𝐾)) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | 
| 66 | 14, 17, 47, 65 | syl3anc 1373 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹)(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | 
| 67 | 20, 66 | eqbrtrd 5165 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | 
| 68 | 67 | adantr 480 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐹))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | 
| 69 | 64, 68 | eqbrtrrd 5167 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | 
| 70 | 2, 42, 43, 50, 55, 62, 69 | latasymd 18490 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 71 | 61 | adantr 480 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 72 |  | simpl1l 1225 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ HL) | 
| 73 |  | simpl1 1192 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 74 |  | simpl2 1193 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) | 
| 75 |  | simpr1 1195 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾))) | 
| 76 |  | eqid 2737 | . . . . . 6
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 77 | 2, 76, 3, 4, 15 | trlnidat 40175 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) | 
| 78 | 73, 74, 75, 77 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) | 
| 79 |  | simpl3 1194 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) | 
| 80 | 74, 79 | jca 511 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) | 
| 81 |  | simpr3 1197 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) | 
| 82 | 76, 3, 4, 15 | trlcoat 40725 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾)) | 
| 83 | 73, 80, 81, 82 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾)) | 
| 84 |  | simpr2 1196 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾))) | 
| 85 | 2, 3, 4, 15 | trlcone 40730 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐹) ≠ (𝑅‘𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅‘𝐹) ≠ (𝑅‘(𝐹 ∘ 𝐺))) | 
| 86 | 73, 80, 81, 84, 85 | syl112anc 1376 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ≠ (𝑅‘(𝐹 ∘ 𝐺))) | 
| 87 | 2, 76, 3, 4, 15 | trlnidat 40175 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅‘𝐺) ∈ (Atoms‘𝐾)) | 
| 88 | 73, 79, 84, 87 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ∈ (Atoms‘𝐾)) | 
| 89 | 42, 18, 76 | ps-1 39479 | . . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ≠ (𝑅‘(𝐹 ∘ 𝐺))) ∧ ((𝑅‘𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐺) ∈ (Atoms‘𝐾))) → (((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺)))) | 
| 90 | 72, 78, 83, 86, 78, 88, 89 | syl132anc 1390 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺)))(le‘𝐾)((𝑅‘𝐹) ∨ (𝑅‘𝐺)) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺)))) | 
| 91 | 71, 90 | mpbid 232 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | 
| 92 | 12, 41, 70, 91 | pm2.61da3ne 3031 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |