Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   GIF version

Theorem trljco 40697
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j = (join‘𝐾)
trljco.h 𝐻 = (LHyp‘𝐾)
trljco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5882 . . . . 5 (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
2 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3 trljco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 trljco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 40081 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1of 6862 . . . . . 6 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
8 fcoi2 6796 . . . . . 6 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
96, 7, 83syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
101, 9sylan9eqr 2802 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐺)
1110fveq2d 6924 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
1211oveq2d 7464 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
13 simp1l 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ HL)
1413hllatd 39320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ Lat)
15 trljco.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
162, 3, 4, 15trlcl 40121 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
18 trljco.j . . . . . . 7 = (join‘𝐾)
192, 18latjidm 18532 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
2014, 17, 19syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
21 hlol 39317 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2213, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ OL)
23 eqid 2740 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
242, 18, 23olj01 39181 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2522, 17, 24syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2620, 25eqtr4d 2783 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
2726adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
28 coeq2 5883 . . . . . 6 (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
292, 3, 4ltrn1o 40081 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
30293adant3 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6862 . . . . . . 7 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6795 . . . . . . 7 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3428, 33sylan9eqr 2802 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐹)
3534fveq2d 6924 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐹))
3635oveq2d 7464 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐹)))
372, 23, 3, 4, 15trlid0b 40135 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
38373adant2 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
3938biimpa 476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (0.‘𝐾))
4039oveq2d 7464 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐺)) = ((𝑅𝐹) (0.‘𝐾)))
4127, 36, 403eqtr4d 2790 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
42 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
4314adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ Lat)
44 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
453, 4ltrnco 40676 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
462, 3, 4, 15trlcl 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
4744, 45, 46syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
482, 18latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
4914, 17, 47, 48syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
5049adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
512, 3, 4, 15trlcl 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
52513adant2 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
532, 18latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5414, 17, 52, 53syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5554adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
562, 42, 18latlej1 18518 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5714, 17, 52, 56syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5842, 18, 3, 4, 15trlco 40684 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
592, 42, 18latjle12 18520 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6014, 17, 47, 54, 59syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6157, 58, 60mpbi2and 711 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
6261adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
63 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
6463oveq2d 7464 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (𝑅𝐺)))
652, 42, 18latlej1 18518 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6614, 17, 47, 65syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6720, 66eqbrtrd 5188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6867adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6964, 68eqbrtrrd 5190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
702, 42, 43, 50, 55, 62, 69latasymd 18515 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
7161adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
72 simpl1l 1224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
73 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 simpl2 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
75 simpr1 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
76 eqid 2740 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
772, 76, 3, 4, 15trlnidat 40130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
7873, 74, 75, 77syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
79 simpl3 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
8074, 79jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑇𝐺𝑇))
81 simpr3 1196 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
8276, 3, 4, 15trlcoat 40680 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
8373, 80, 81, 82syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
84 simpr2 1195 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾)))
852, 3, 4, 15trlcone 40685 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
8673, 80, 81, 84, 85syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
872, 76, 3, 4, 15trlnidat 40130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8873, 79, 84, 87syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8942, 18, 76ps-1 39434 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))) ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐺) ∈ (Atoms‘𝐾))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9072, 78, 83, 86, 78, 88, 89syl132anc 1388 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9171, 90mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
9212, 41, 70, 91pm2.61da3ne 3037 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  0.cp0 18493  Latclat 18501  OLcol 39130  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  trljco2  40698  cdlemkid1  40879
  Copyright terms: Public domain W3C validator