Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   GIF version

Theorem trljco 40741
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j = (join‘𝐾)
trljco.h 𝐻 = (LHyp‘𝐾)
trljco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5824 . . . . 5 (𝐹 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
2 eqid 2730 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3 trljco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 trljco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrn1o 40125 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1of 6803 . . . . . 6 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
8 fcoi2 6738 . . . . . 6 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
96, 7, 83syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
101, 9sylan9eqr 2787 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐺)
1110fveq2d 6865 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
1211oveq2d 7406 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
13 simp1l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ HL)
1413hllatd 39364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ Lat)
15 trljco.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
162, 3, 4, 15trlcl 40165 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
18 trljco.j . . . . . . 7 = (join‘𝐾)
192, 18latjidm 18428 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
2014, 17, 19syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = (𝑅𝐹))
21 hlol 39361 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2213, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐾 ∈ OL)
23 eqid 2730 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
242, 18, 23olj01 39225 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2522, 17, 24syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (0.‘𝐾)) = (𝑅𝐹))
2620, 25eqtr4d 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
2726adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (0.‘𝐾)))
28 coeq2 5825 . . . . . 6 (𝐺 = ( I ↾ (Base‘𝐾)) → (𝐹𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
292, 3, 4ltrn1o 40125 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
30293adant3 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6803 . . . . . . 7 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6737 . . . . . . 7 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3428, 33sylan9eqr 2787 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = 𝐹)
3534fveq2d 6865 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅‘(𝐹𝐺)) = (𝑅𝐹))
3635oveq2d 7406 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐹)))
372, 23, 3, 4, 15trlid0b 40179 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
38373adant2 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝐺) = (0.‘𝐾)))
3938biimpa 476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (0.‘𝐾))
4039oveq2d 7406 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅𝐺)) = ((𝑅𝐹) (0.‘𝐾)))
4127, 36, 403eqtr4d 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐺 = ( I ↾ (Base‘𝐾))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
42 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
4314adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ Lat)
44 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
453, 4ltrnco 40720 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
462, 3, 4, 15trlcl 40165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
4744, 45, 46syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾))
482, 18latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
4914, 17, 47, 48syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
5049adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) ∈ (Base‘𝐾))
512, 3, 4, 15trlcl 40165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
52513adant2 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
532, 18latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5414, 17, 52, 53syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
5554adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
562, 42, 18latlej1 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5714, 17, 52, 56syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
5842, 18, 3, 4, 15trlco 40728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
592, 42, 18latjle12 18416 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾) ∧ ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6014, 17, 47, 54, 59syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (((𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ∧ (𝑅‘(𝐹𝐺))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺))))
6157, 58, 60mpbi2and 712 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
6261adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
63 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
6463oveq2d 7406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹)) = ((𝑅𝐹) (𝑅𝐺)))
652, 42, 18latlej1 18414 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Base‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6614, 17, 47, 65syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅𝐹)(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6720, 66eqbrtrd 5132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6867adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐹))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
6964, 68eqbrtrrd 5134 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅𝐺))(le‘𝐾)((𝑅𝐹) (𝑅‘(𝐹𝐺))))
702, 42, 43, 50, 55, 62, 69latasymd 18411 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
7161adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)))
72 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
73 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
75 simpr1 1195 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
76 eqid 2730 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
772, 76, 3, 4, 15trlnidat 40174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
7873, 74, 75, 77syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
79 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
8074, 79jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑇𝐺𝑇))
81 simpr3 1197 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
8276, 3, 4, 15trlcoat 40724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
8373, 80, 81, 82syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
84 simpr2 1196 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ (Base‘𝐾)))
852, 3, 4, 15trlcone 40729 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
8673, 80, 81, 84, 85syl112anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
872, 76, 3, 4, 15trlnidat 40174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ (Base‘𝐾))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8873, 79, 84, 87syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
8942, 18, 76ps-1 39478 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))) ∧ ((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐺) ∈ (Atoms‘𝐾))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9072, 78, 83, 86, 78, 88, 89syl132anc 1390 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑅𝐹) (𝑅‘(𝐹𝐺)))(le‘𝐾)((𝑅𝐹) (𝑅𝐺)) ↔ ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺))))
9171, 90mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ 𝐺 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
9212, 41, 70, 91pm2.61da3ne 3015 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110   I cid 5535  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  0.cp0 18389  Latclat 18397  OLcol 39174  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  trljco2  40742  cdlemkid1  40923
  Copyright terms: Public domain W3C validator