Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61dane | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.) |
Ref | Expression |
---|---|
pm2.61dane.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61dane.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
pm2.61dane | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dane.1 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
2 | 1 | ex 413 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
3 | pm2.61dane.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
4 | 3 | ex 413 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
5 | 2, 4 | pm2.61dne 3032 | 1 ⊢ (𝜑 → 𝜓) |
Copyright terms: Public domain | W3C validator |