Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh4dimN Structured version   Visualization version   GIF version

Theorem dvh4dimN 41450
Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh4dimN (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh4dimN
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 41449 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
98adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
10 eqid 2736 . . . . . . . 8 (0g𝑈) = (0g𝑈)
111, 2, 5dvhlmod 41113 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
12 prssi 4820 . . . . . . . . 9 ((𝑌𝑉𝑍𝑉) → {𝑌, 𝑍} ⊆ 𝑉)
136, 7, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑌, 𝑍} ⊆ 𝑉)
143, 10, 4, 11, 13lspun0 21010 . . . . . . 7 (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑌, 𝑍}))
15 tprot 4748 . . . . . . . . . 10 {(0g𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g𝑈)}
16 df-tp 4630 . . . . . . . . . 10 {𝑌, 𝑍, (0g𝑈)} = ({𝑌, 𝑍} ∪ {(0g𝑈)})
1715, 16eqtr2i 2765 . . . . . . . . 9 ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {(0g𝑈), 𝑌, 𝑍}
18 tpeq1 4741 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {(0g𝑈), 𝑌, 𝑍})
1917, 18eqtr4id 2795 . . . . . . . 8 (𝑋 = (0g𝑈) → ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
2019fveq2d 6909 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2114, 20sylan9req 2797 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2221eleq2d 2826 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2322notbid 318 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2423rexbidv 3178 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
259, 24mpbid 232 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
26 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 41449 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
2827adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
29 prssi 4820 . . . . . . . . 9 ((𝑋𝑉𝑍𝑉) → {𝑋, 𝑍} ⊆ 𝑉)
3026, 7, 29syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑍} ⊆ 𝑉)
313, 10, 4, 11, 30lspun0 21010 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑍}))
32 df-tp 4630 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = ({𝑋, 𝑍} ∪ {(0g𝑈)})
33 tpcomb 4750 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = {𝑋, (0g𝑈), 𝑍}
3432, 33eqtr3i 2766 . . . . . . . . 9 ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, (0g𝑈), 𝑍}
35 tpeq2 4742 . . . . . . . . 9 (𝑌 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g𝑈), 𝑍})
3634, 35eqtr4id 2795 . . . . . . . 8 (𝑌 = (0g𝑈) → ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
3736fveq2d 6909 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3831, 37sylan9req 2797 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3938eleq2d 2826 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4039notbid 318 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4140rexbidv 3178 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4228, 41mpbid 232 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
431, 2, 3, 4, 5, 26, 6dvh3dim 41449 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
4443adantr 480 . . 3 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
45 prssi 4820 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
4626, 6, 45syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
473, 10, 4, 11, 46lspun0 21010 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌}))
48 tpeq3 4743 . . . . . . . . 9 (𝑍 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g𝑈)})
49 df-tp 4630 . . . . . . . . 9 {𝑋, 𝑌, (0g𝑈)} = ({𝑋, 𝑌} ∪ {(0g𝑈)})
5048, 49eqtr2di 2793 . . . . . . . 8 (𝑍 = (0g𝑈) → ({𝑋, 𝑌} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
5150fveq2d 6909 . . . . . . 7 (𝑍 = (0g𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5247, 51sylan9req 2797 . . . . . 6 ((𝜑𝑍 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5352eleq2d 2826 . . . . 5 ((𝜑𝑍 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5453notbid 318 . . . 4 ((𝜑𝑍 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5554rexbidv 3178 . . 3 ((𝜑𝑍 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5644, 55mpbid 232 . 2 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
575adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5826adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋𝑉)
596adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌𝑉)
607adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍𝑉)
61 simpr1 1194 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
62 simpr2 1195 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
63 simpr3 1196 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍 ≠ (0g𝑈))
641, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63dvh4dimlem 41446 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
6525, 42, 56, 64pm2.61da3ne 3030 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069  cun 3948  wss 3950  {csn 4625  {cpr 4627  {ctp 4629  cfv 6560  Basecbs 17248  0gc0g 17485  LSpanclspn 20970  HLchlt 39352  LHypclh 39987  DVecHcdvh 41081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lsatoms 38978  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tgrp 40746  df-tendo 40758  df-edring 40760  df-dveca 41006  df-disoa 41032  df-dvech 41082  df-dib 41142  df-dic 41176  df-dih 41232  df-doch 41351  df-djh 41398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator