Proof of Theorem dvh4dimN
| Step | Hyp | Ref
| Expression |
| 1 | | dvh3dim.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | dvh3dim.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | dvh3dim.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑈) |
| 4 | | dvh3dim.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑈) |
| 5 | | dvh3dim.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | | dvh3dim.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 7 | | dvh3dim2.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dvh3dim 41470 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍})) |
| 9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍})) |
| 10 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 11 | 1, 2, 5 | dvhlmod 41134 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | | prssi 4802 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → {𝑌, 𝑍} ⊆ 𝑉) |
| 13 | 6, 7, 12 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → {𝑌, 𝑍} ⊆ 𝑉) |
| 14 | 3, 10, 4, 11, 13 | lspun0 20973 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑌, 𝑍})) |
| 15 | | tprot 4730 |
. . . . . . . . . 10
⊢
{(0g‘𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g‘𝑈)} |
| 16 | | df-tp 4611 |
. . . . . . . . . 10
⊢ {𝑌, 𝑍, (0g‘𝑈)} = ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) |
| 17 | 15, 16 | eqtr2i 2760 |
. . . . . . . . 9
⊢ ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) =
{(0g‘𝑈),
𝑌, 𝑍} |
| 18 | | tpeq1 4723 |
. . . . . . . . 9
⊢ (𝑋 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {(0g‘𝑈), 𝑌, 𝑍}) |
| 19 | 17, 18 | eqtr4id 2790 |
. . . . . . . 8
⊢ (𝑋 = (0g‘𝑈) → ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
| 20 | 19 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑋 = (0g‘𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 21 | 14, 20 | sylan9req 2792 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 22 | 21 | eleq2d 2821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 23 | 22 | notbid 318 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 24 | 23 | rexbidv 3165 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 25 | 9, 24 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 26 | | dvh3dim.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 27 | 1, 2, 3, 4, 5, 26,
7 | dvh3dim 41470 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) |
| 28 | 27 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) |
| 29 | | prssi 4802 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → {𝑋, 𝑍} ⊆ 𝑉) |
| 30 | 26, 7, 29 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑍} ⊆ 𝑉) |
| 31 | 3, 10, 4, 11, 30 | lspun0 20973 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑍})) |
| 32 | | df-tp 4611 |
. . . . . . . . . 10
⊢ {𝑋, 𝑍, (0g‘𝑈)} = ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) |
| 33 | | tpcomb 4732 |
. . . . . . . . . 10
⊢ {𝑋, 𝑍, (0g‘𝑈)} = {𝑋, (0g‘𝑈), 𝑍} |
| 34 | 32, 33 | eqtr3i 2761 |
. . . . . . . . 9
⊢ ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, (0g‘𝑈), 𝑍} |
| 35 | | tpeq2 4724 |
. . . . . . . . 9
⊢ (𝑌 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g‘𝑈), 𝑍}) |
| 36 | 34, 35 | eqtr4id 2790 |
. . . . . . . 8
⊢ (𝑌 = (0g‘𝑈) → ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
| 37 | 36 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑌 = (0g‘𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 38 | 31, 37 | sylan9req 2792 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 39 | 38 | eleq2d 2821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 40 | 39 | notbid 318 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 41 | 40 | rexbidv 3165 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 42 | 28, 41 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 43 | 1, 2, 3, 4, 5, 26,
6 | dvh3dim 41470 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 44 | 43 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 45 | | prssi 4802 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
| 46 | 26, 6, 45 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 47 | 3, 10, 4, 11, 46 | lspun0 20973 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌})) |
| 48 | | tpeq3 4725 |
. . . . . . . . 9
⊢ (𝑍 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g‘𝑈)}) |
| 49 | | df-tp 4611 |
. . . . . . . . 9
⊢ {𝑋, 𝑌, (0g‘𝑈)} = ({𝑋, 𝑌} ∪ {(0g‘𝑈)}) |
| 50 | 48, 49 | eqtr2di 2788 |
. . . . . . . 8
⊢ (𝑍 = (0g‘𝑈) → ({𝑋, 𝑌} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
| 51 | 50 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑍 = (0g‘𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 52 | 47, 51 | sylan9req 2792 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 53 | 52 | eleq2d 2821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 54 | 53 | notbid 318 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 55 | 54 | rexbidv 3165 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 56 | 44, 55 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 57 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 58 | 26 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑋 ∈ 𝑉) |
| 59 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑌 ∈ 𝑉) |
| 60 | 7 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑍 ∈ 𝑉) |
| 61 | | simpr1 1195 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑋 ≠ (0g‘𝑈)) |
| 62 | | simpr2 1196 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑌 ≠ (0g‘𝑈)) |
| 63 | | simpr3 1197 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑍 ≠ (0g‘𝑈)) |
| 64 | 1, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63 | dvh4dimlem 41467 |
. 2
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 65 | 25, 42, 56, 64 | pm2.61da3ne 3022 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |