Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh4dimN Structured version   Visualization version   GIF version

Theorem dvh4dimN 40306
Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh4dimN (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh4dimN
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 40305 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
98adantr 481 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
10 eqid 2732 . . . . . . . 8 (0g𝑈) = (0g𝑈)
111, 2, 5dvhlmod 39969 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
12 prssi 4823 . . . . . . . . 9 ((𝑌𝑉𝑍𝑉) → {𝑌, 𝑍} ⊆ 𝑉)
136, 7, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑌, 𝑍} ⊆ 𝑉)
143, 10, 4, 11, 13lspun0 20614 . . . . . . 7 (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑌, 𝑍}))
15 tprot 4752 . . . . . . . . . 10 {(0g𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g𝑈)}
16 df-tp 4632 . . . . . . . . . 10 {𝑌, 𝑍, (0g𝑈)} = ({𝑌, 𝑍} ∪ {(0g𝑈)})
1715, 16eqtr2i 2761 . . . . . . . . 9 ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {(0g𝑈), 𝑌, 𝑍}
18 tpeq1 4745 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {(0g𝑈), 𝑌, 𝑍})
1917, 18eqtr4id 2791 . . . . . . . 8 (𝑋 = (0g𝑈) → ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
2019fveq2d 6892 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2114, 20sylan9req 2793 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2221eleq2d 2819 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2322notbid 317 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2423rexbidv 3178 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
259, 24mpbid 231 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
26 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 40305 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
2827adantr 481 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
29 prssi 4823 . . . . . . . . 9 ((𝑋𝑉𝑍𝑉) → {𝑋, 𝑍} ⊆ 𝑉)
3026, 7, 29syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑍} ⊆ 𝑉)
313, 10, 4, 11, 30lspun0 20614 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑍}))
32 df-tp 4632 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = ({𝑋, 𝑍} ∪ {(0g𝑈)})
33 tpcomb 4754 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = {𝑋, (0g𝑈), 𝑍}
3432, 33eqtr3i 2762 . . . . . . . . 9 ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, (0g𝑈), 𝑍}
35 tpeq2 4746 . . . . . . . . 9 (𝑌 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g𝑈), 𝑍})
3634, 35eqtr4id 2791 . . . . . . . 8 (𝑌 = (0g𝑈) → ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
3736fveq2d 6892 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3831, 37sylan9req 2793 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3938eleq2d 2819 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4039notbid 317 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4140rexbidv 3178 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4228, 41mpbid 231 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
431, 2, 3, 4, 5, 26, 6dvh3dim 40305 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
4443adantr 481 . . 3 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
45 prssi 4823 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
4626, 6, 45syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
473, 10, 4, 11, 46lspun0 20614 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌}))
48 tpeq3 4747 . . . . . . . . 9 (𝑍 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g𝑈)})
49 df-tp 4632 . . . . . . . . 9 {𝑋, 𝑌, (0g𝑈)} = ({𝑋, 𝑌} ∪ {(0g𝑈)})
5048, 49eqtr2di 2789 . . . . . . . 8 (𝑍 = (0g𝑈) → ({𝑋, 𝑌} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
5150fveq2d 6892 . . . . . . 7 (𝑍 = (0g𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5247, 51sylan9req 2793 . . . . . 6 ((𝜑𝑍 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5352eleq2d 2819 . . . . 5 ((𝜑𝑍 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5453notbid 317 . . . 4 ((𝜑𝑍 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5554rexbidv 3178 . . 3 ((𝜑𝑍 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5644, 55mpbid 231 . 2 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
575adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5826adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋𝑉)
596adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌𝑉)
607adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍𝑉)
61 simpr1 1194 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
62 simpr2 1195 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
63 simpr3 1196 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍 ≠ (0g𝑈))
641, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63dvh4dimlem 40302 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
6525, 42, 56, 64pm2.61da3ne 3031 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  cun 3945  wss 3947  {csn 4627  {cpr 4629  {ctp 4631  cfv 6540  Basecbs 17140  0gc0g 17381  LSpanclspn 20574  HLchlt 38208  LHypclh 38843  DVecHcdvh 39937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-drng 20309  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lvec 20706  df-lsatoms 37834  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-tgrp 39602  df-tendo 39614  df-edring 39616  df-dveca 39862  df-disoa 39888  df-dvech 39938  df-dib 39998  df-dic 40032  df-dih 40088  df-doch 40207  df-djh 40254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator