Proof of Theorem dvh4dimN
Step | Hyp | Ref
| Expression |
1 | | dvh3dim.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dvh3dim.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | dvh3dim.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑈) |
4 | | dvh3dim.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑈) |
5 | | dvh3dim.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | dvh3dim.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
7 | | dvh3dim2.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
8 | 1, 2, 3, 4, 5, 6, 7 | dvh3dim 39387 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍})) |
9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍})) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
11 | 1, 2, 5 | dvhlmod 39051 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | | prssi 4751 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → {𝑌, 𝑍} ⊆ 𝑉) |
13 | 6, 7, 12 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → {𝑌, 𝑍} ⊆ 𝑉) |
14 | 3, 10, 4, 11, 13 | lspun0 20188 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑌, 𝑍})) |
15 | | tprot 4682 |
. . . . . . . . . 10
⊢
{(0g‘𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g‘𝑈)} |
16 | | df-tp 4563 |
. . . . . . . . . 10
⊢ {𝑌, 𝑍, (0g‘𝑈)} = ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) |
17 | 15, 16 | eqtr2i 2767 |
. . . . . . . . 9
⊢ ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) =
{(0g‘𝑈),
𝑌, 𝑍} |
18 | | tpeq1 4675 |
. . . . . . . . 9
⊢ (𝑋 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {(0g‘𝑈), 𝑌, 𝑍}) |
19 | 17, 18 | eqtr4id 2798 |
. . . . . . . 8
⊢ (𝑋 = (0g‘𝑈) → ({𝑌, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
20 | 19 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑋 = (0g‘𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
21 | 14, 20 | sylan9req 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
22 | 21 | eleq2d 2824 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
23 | 22 | notbid 317 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
24 | 23 | rexbidv 3225 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
25 | 9, 24 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
26 | | dvh3dim.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
27 | 1, 2, 3, 4, 5, 26,
7 | dvh3dim 39387 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) |
28 | 27 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) |
29 | | prssi 4751 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → {𝑋, 𝑍} ⊆ 𝑉) |
30 | 26, 7, 29 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑍} ⊆ 𝑉) |
31 | 3, 10, 4, 11, 30 | lspun0 20188 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑍})) |
32 | | df-tp 4563 |
. . . . . . . . . 10
⊢ {𝑋, 𝑍, (0g‘𝑈)} = ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) |
33 | | tpcomb 4684 |
. . . . . . . . . 10
⊢ {𝑋, 𝑍, (0g‘𝑈)} = {𝑋, (0g‘𝑈), 𝑍} |
34 | 32, 33 | eqtr3i 2768 |
. . . . . . . . 9
⊢ ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, (0g‘𝑈), 𝑍} |
35 | | tpeq2 4676 |
. . . . . . . . 9
⊢ (𝑌 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g‘𝑈), 𝑍}) |
36 | 34, 35 | eqtr4id 2798 |
. . . . . . . 8
⊢ (𝑌 = (0g‘𝑈) → ({𝑋, 𝑍} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
37 | 36 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑌 = (0g‘𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
38 | 31, 37 | sylan9req 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
39 | 38 | eleq2d 2824 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
40 | 39 | notbid 317 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
41 | 40 | rexbidv 3225 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
42 | 28, 41 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
43 | 1, 2, 3, 4, 5, 26,
6 | dvh3dim 39387 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
44 | 43 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
45 | | prssi 4751 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
46 | 26, 6, 45 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
47 | 3, 10, 4, 11, 46 | lspun0 20188 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌})) |
48 | | tpeq3 4677 |
. . . . . . . . 9
⊢ (𝑍 = (0g‘𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g‘𝑈)}) |
49 | | df-tp 4563 |
. . . . . . . . 9
⊢ {𝑋, 𝑌, (0g‘𝑈)} = ({𝑋, 𝑌} ∪ {(0g‘𝑈)}) |
50 | 48, 49 | eqtr2di 2796 |
. . . . . . . 8
⊢ (𝑍 = (0g‘𝑈) → ({𝑋, 𝑌} ∪ {(0g‘𝑈)}) = {𝑋, 𝑌, 𝑍}) |
51 | 50 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑍 = (0g‘𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g‘𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
52 | 47, 51 | sylan9req 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍})) |
53 | 52 | eleq2d 2824 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
54 | 53 | notbid 317 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
55 | 54 | rexbidv 3225 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
56 | 44, 55 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝑍 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
57 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
58 | 26 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑋 ∈ 𝑉) |
59 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑌 ∈ 𝑉) |
60 | 7 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑍 ∈ 𝑉) |
61 | | simpr1 1192 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑋 ≠ (0g‘𝑈)) |
62 | | simpr2 1193 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑌 ≠ (0g‘𝑈)) |
63 | | simpr3 1194 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → 𝑍 ≠ (0g‘𝑈)) |
64 | 1, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63 | dvh4dimlem 39384 |
. 2
⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈) ∧ 𝑍 ≠ (0g‘𝑈))) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
65 | 25, 42, 56, 64 | pm2.61da3ne 3033 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |