Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh4dimN Structured version   Visualization version   GIF version

Theorem dvh4dimN 38463
Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh4dimN (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh4dimN
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 38462 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
98adantr 481 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
10 eqid 2818 . . . . . . . 8 (0g𝑈) = (0g𝑈)
111, 2, 5dvhlmod 38126 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
12 prssi 4746 . . . . . . . . 9 ((𝑌𝑉𝑍𝑉) → {𝑌, 𝑍} ⊆ 𝑉)
136, 7, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑌, 𝑍} ⊆ 𝑉)
143, 10, 4, 11, 13lspun0 19712 . . . . . . 7 (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑌, 𝑍}))
15 tpeq1 4670 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {(0g𝑈), 𝑌, 𝑍})
16 tprot 4677 . . . . . . . . . 10 {(0g𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g𝑈)}
17 df-tp 4562 . . . . . . . . . 10 {𝑌, 𝑍, (0g𝑈)} = ({𝑌, 𝑍} ∪ {(0g𝑈)})
1816, 17eqtr2i 2842 . . . . . . . . 9 ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {(0g𝑈), 𝑌, 𝑍}
1915, 18syl6reqr 2872 . . . . . . . 8 (𝑋 = (0g𝑈) → ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
2019fveq2d 6667 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2114, 20sylan9req 2874 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2221eleq2d 2895 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2322notbid 319 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2423rexbidv 3294 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
259, 24mpbid 233 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
26 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 38462 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
2827adantr 481 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
29 prssi 4746 . . . . . . . . 9 ((𝑋𝑉𝑍𝑉) → {𝑋, 𝑍} ⊆ 𝑉)
3026, 7, 29syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑍} ⊆ 𝑉)
313, 10, 4, 11, 30lspun0 19712 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑍}))
32 tpeq2 4671 . . . . . . . . 9 (𝑌 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g𝑈), 𝑍})
33 df-tp 4562 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = ({𝑋, 𝑍} ∪ {(0g𝑈)})
34 tpcomb 4679 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = {𝑋, (0g𝑈), 𝑍}
3533, 34eqtr3i 2843 . . . . . . . . 9 ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, (0g𝑈), 𝑍}
3632, 35syl6reqr 2872 . . . . . . . 8 (𝑌 = (0g𝑈) → ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
3736fveq2d 6667 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3831, 37sylan9req 2874 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3938eleq2d 2895 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4039notbid 319 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4140rexbidv 3294 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4228, 41mpbid 233 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
431, 2, 3, 4, 5, 26, 6dvh3dim 38462 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
4443adantr 481 . . 3 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
45 prssi 4746 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
4626, 6, 45syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
473, 10, 4, 11, 46lspun0 19712 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌}))
48 tpeq3 4672 . . . . . . . . 9 (𝑍 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g𝑈)})
49 df-tp 4562 . . . . . . . . 9 {𝑋, 𝑌, (0g𝑈)} = ({𝑋, 𝑌} ∪ {(0g𝑈)})
5048, 49syl6req 2870 . . . . . . . 8 (𝑍 = (0g𝑈) → ({𝑋, 𝑌} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
5150fveq2d 6667 . . . . . . 7 (𝑍 = (0g𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5247, 51sylan9req 2874 . . . . . 6 ((𝜑𝑍 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5352eleq2d 2895 . . . . 5 ((𝜑𝑍 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5453notbid 319 . . . 4 ((𝜑𝑍 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5554rexbidv 3294 . . 3 ((𝜑𝑍 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5644, 55mpbid 233 . 2 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
575adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5826adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋𝑉)
596adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌𝑉)
607adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍𝑉)
61 simpr1 1186 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
62 simpr2 1187 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
63 simpr3 1188 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍 ≠ (0g𝑈))
641, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63dvh4dimlem 38459 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
6525, 42, 56, 64pm2.61da3ne 3103 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  cun 3931  wss 3933  {csn 4557  {cpr 4559  {ctp 4561  cfv 6348  Basecbs 16471  0gc0g 16701  LSpanclspn 19672  HLchlt 36366  LHypclh 37000  DVecHcdvh 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-riotaBAD 35969
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-undef 7928  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-0g 16703  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-p1 17638  df-lat 17644  df-clat 17706  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lvec 19804  df-lsatoms 35992  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-llines 36514  df-lplanes 36515  df-lvols 36516  df-lines 36517  df-psubsp 36519  df-pmap 36520  df-padd 36812  df-lhyp 37004  df-laut 37005  df-ldil 37120  df-ltrn 37121  df-trl 37175  df-tgrp 37759  df-tendo 37771  df-edring 37773  df-dveca 38019  df-disoa 38045  df-dvech 38095  df-dib 38155  df-dic 38189  df-dih 38245  df-doch 38364  df-djh 38411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator