Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh4dimN Structured version   Visualization version   GIF version

Theorem dvh4dimN 41441
Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh4dimN (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh4dimN
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 41440 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
98adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
10 eqid 2729 . . . . . . . 8 (0g𝑈) = (0g𝑈)
111, 2, 5dvhlmod 41104 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
12 prssi 4785 . . . . . . . . 9 ((𝑌𝑉𝑍𝑉) → {𝑌, 𝑍} ⊆ 𝑉)
136, 7, 12syl2anc 584 . . . . . . . 8 (𝜑 → {𝑌, 𝑍} ⊆ 𝑉)
143, 10, 4, 11, 13lspun0 20917 . . . . . . 7 (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑌, 𝑍}))
15 tprot 4713 . . . . . . . . . 10 {(0g𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g𝑈)}
16 df-tp 4594 . . . . . . . . . 10 {𝑌, 𝑍, (0g𝑈)} = ({𝑌, 𝑍} ∪ {(0g𝑈)})
1715, 16eqtr2i 2753 . . . . . . . . 9 ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {(0g𝑈), 𝑌, 𝑍}
18 tpeq1 4706 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {(0g𝑈), 𝑌, 𝑍})
1917, 18eqtr4id 2783 . . . . . . . 8 (𝑋 = (0g𝑈) → ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
2019fveq2d 6862 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2114, 20sylan9req 2785 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2221eleq2d 2814 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2322notbid 318 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2423rexbidv 3157 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
259, 24mpbid 232 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
26 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 41440 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
2827adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
29 prssi 4785 . . . . . . . . 9 ((𝑋𝑉𝑍𝑉) → {𝑋, 𝑍} ⊆ 𝑉)
3026, 7, 29syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑍} ⊆ 𝑉)
313, 10, 4, 11, 30lspun0 20917 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑍}))
32 df-tp 4594 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = ({𝑋, 𝑍} ∪ {(0g𝑈)})
33 tpcomb 4715 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = {𝑋, (0g𝑈), 𝑍}
3432, 33eqtr3i 2754 . . . . . . . . 9 ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, (0g𝑈), 𝑍}
35 tpeq2 4707 . . . . . . . . 9 (𝑌 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g𝑈), 𝑍})
3634, 35eqtr4id 2783 . . . . . . . 8 (𝑌 = (0g𝑈) → ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
3736fveq2d 6862 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3831, 37sylan9req 2785 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3938eleq2d 2814 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4039notbid 318 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4140rexbidv 3157 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4228, 41mpbid 232 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
431, 2, 3, 4, 5, 26, 6dvh3dim 41440 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
4443adantr 480 . . 3 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
45 prssi 4785 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
4626, 6, 45syl2anc 584 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
473, 10, 4, 11, 46lspun0 20917 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌}))
48 tpeq3 4708 . . . . . . . . 9 (𝑍 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g𝑈)})
49 df-tp 4594 . . . . . . . . 9 {𝑋, 𝑌, (0g𝑈)} = ({𝑋, 𝑌} ∪ {(0g𝑈)})
5048, 49eqtr2di 2781 . . . . . . . 8 (𝑍 = (0g𝑈) → ({𝑋, 𝑌} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
5150fveq2d 6862 . . . . . . 7 (𝑍 = (0g𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5247, 51sylan9req 2785 . . . . . 6 ((𝜑𝑍 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5352eleq2d 2814 . . . . 5 ((𝜑𝑍 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5453notbid 318 . . . 4 ((𝜑𝑍 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5554rexbidv 3157 . . 3 ((𝜑𝑍 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5644, 55mpbid 232 . 2 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
575adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5826adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋𝑉)
596adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌𝑉)
607adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍𝑉)
61 simpr1 1195 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
62 simpr2 1196 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
63 simpr3 1197 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍 ≠ (0g𝑈))
641, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63dvh4dimlem 41437 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
6525, 42, 56, 64pm2.61da3ne 3014 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3912  wss 3914  {csn 4589  {cpr 4591  {ctp 4593  cfv 6511  Basecbs 17179  0gc0g 17402  LSpanclspn 20877  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator