| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61iine | Structured version Visualization version GIF version | ||
| Description: Equality version of pm2.61ii 183. (Contributed by Scott Fenton, 13-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61iine.1 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → 𝜑) |
| pm2.61iine.2 | ⊢ (𝐴 = 𝐶 → 𝜑) |
| pm2.61iine.3 | ⊢ (𝐵 = 𝐷 → 𝜑) |
| Ref | Expression |
|---|---|
| pm2.61iine | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61iine.2 | . 2 ⊢ (𝐴 = 𝐶 → 𝜑) | |
| 2 | pm2.61iine.3 | . . . 4 ⊢ (𝐵 = 𝐷 → 𝜑) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐷) → 𝜑) |
| 4 | pm2.61iine.1 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → 𝜑) | |
| 5 | 3, 4 | pm2.61dane 3020 | . 2 ⊢ (𝐴 ≠ 𝐶 → 𝜑) |
| 6 | 1, 5 | pm2.61ine 3016 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2934 |
| This theorem is referenced by: fntpb 7206 elfiun 9447 dedekind 11403 mdsymi 32397 isubgr3stgrlem6 47950 |
| Copyright terms: Public domain | W3C validator |