| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
| pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
| pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
| 2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
| 3 | 2 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
| 4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
| 6 | 3, 5 | pm2.61dane 3019 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| 7 | 1, 6 | pm2.61dane 3019 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2933 |
| This theorem is referenced by: pm2.61da3ne 3021 isabvd 20772 xrsxmet 24749 chordthmlem3 26796 mumul 27143 lgsdirnn0 27307 lgsdinn0 27308 constrrtcc 33769 lfl1dim 39139 lfl1dim2N 39140 pmodlem2 39866 cdlemg29 40724 cdlemg39 40735 cdlemg44b 40751 dia2dimlem9 41091 dihprrn 41445 dvh3dim 41465 lcfl9a 41524 lclkrlem2l 41537 lcfrlem42 41603 mapdh6kN 41765 hdmap1l6k 41839 |
| Copyright terms: Public domain | W3C validator |