MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3035
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 712 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 468 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3034 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3034 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wne 2945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-ne 2946
This theorem is referenced by:  pm2.61da3ne  3036  isabvd  20078  xrsxmet  23970  chordthmlem3  25982  mumul  26328  lgsdirnn0  26490  lgsdinn0  26491  lfl1dim  37131  lfl1dim2N  37132  pmodlem2  37857  cdlemg29  38715  cdlemg39  38726  cdlemg44b  38742  dia2dimlem9  39082  dihprrn  39436  dvh3dim  39456  lcfl9a  39515  lclkrlem2l  39528  lcfrlem42  39594  mapdh6kN  39756  hdmap1l6k  39830
  Copyright terms: Public domain W3C validator