| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
| pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
| pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
| 2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
| 3 | 2 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
| 4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
| 6 | 3, 5 | pm2.61dane 3012 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| 7 | 1, 6 | pm2.61dane 3012 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 |
| This theorem is referenced by: pm2.61da3ne 3014 isabvd 20697 xrsxmet 24696 chordthmlem3 26742 mumul 27089 lgsdirnn0 27253 lgsdinn0 27254 constrrtcc 33708 lfl1dim 39110 lfl1dim2N 39111 pmodlem2 39836 cdlemg29 40694 cdlemg39 40705 cdlemg44b 40721 dia2dimlem9 41061 dihprrn 41415 dvh3dim 41435 lcfl9a 41494 lclkrlem2l 41507 lcfrlem42 41573 mapdh6kN 41735 hdmap1l6k 41809 |
| Copyright terms: Public domain | W3C validator |