![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version |
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
Ref | Expression |
---|---|
pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
Ref | Expression |
---|---|
pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
3 | 2 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
6 | 3, 5 | pm2.61dane 3035 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
7 | 1, 6 | pm2.61dane 3035 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2947 |
This theorem is referenced by: pm2.61da3ne 3037 isabvd 20835 xrsxmet 24850 chordthmlem3 26895 mumul 27242 lgsdirnn0 27406 lgsdinn0 27407 constrrtcc 33726 lfl1dim 39077 lfl1dim2N 39078 pmodlem2 39804 cdlemg29 40662 cdlemg39 40673 cdlemg44b 40689 dia2dimlem9 41029 dihprrn 41383 dvh3dim 41403 lcfl9a 41462 lclkrlem2l 41475 lcfrlem42 41541 mapdh6kN 41703 hdmap1l6k 41777 |
Copyright terms: Public domain | W3C validator |