MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3014
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 467 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3013 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3013 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2927
This theorem is referenced by:  pm2.61da3ne  3015  isabvd  20728  xrsxmet  24705  chordthmlem3  26751  mumul  27098  lgsdirnn0  27262  lgsdinn0  27263  constrrtcc  33732  lfl1dim  39121  lfl1dim2N  39122  pmodlem2  39848  cdlemg29  40706  cdlemg39  40717  cdlemg44b  40733  dia2dimlem9  41073  dihprrn  41427  dvh3dim  41447  lcfl9a  41506  lclkrlem2l  41519  lcfrlem42  41585  mapdh6kN  41747  hdmap1l6k  41821
  Copyright terms: Public domain W3C validator