| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
| pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
| pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
| 2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
| 3 | 2 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
| 4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
| 6 | 3, 5 | pm2.61dane 3015 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| 7 | 1, 6 | pm2.61dane 3015 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2929 |
| This theorem is referenced by: pm2.61da3ne 3017 isabvd 20727 xrsxmet 24725 chordthmlem3 26771 mumul 27118 lgsdirnn0 27282 lgsdinn0 27283 constrrtcc 33748 lfl1dim 39230 lfl1dim2N 39231 pmodlem2 39956 cdlemg29 40814 cdlemg39 40825 cdlemg44b 40841 dia2dimlem9 41181 dihprrn 41535 dvh3dim 41555 lcfl9a 41614 lclkrlem2l 41627 lcfrlem42 41693 mapdh6kN 41855 hdmap1l6k 41929 |
| Copyright terms: Public domain | W3C validator |