| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
| pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
| pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
| 2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
| 3 | 2 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
| 4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
| 6 | 3, 5 | pm2.61dane 3013 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| 7 | 1, 6 | pm2.61dane 3013 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2927 |
| This theorem is referenced by: pm2.61da3ne 3015 isabvd 20728 xrsxmet 24705 chordthmlem3 26751 mumul 27098 lgsdirnn0 27262 lgsdinn0 27263 constrrtcc 33732 lfl1dim 39121 lfl1dim2N 39122 pmodlem2 39848 cdlemg29 40706 cdlemg39 40717 cdlemg44b 40733 dia2dimlem9 41073 dihprrn 41427 dvh3dim 41447 lcfl9a 41506 lclkrlem2l 41519 lcfrlem42 41585 mapdh6kN 41747 hdmap1l6k 41821 |
| Copyright terms: Public domain | W3C validator |