MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3033
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 712 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 468 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3032 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3032 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-ne 2944
This theorem is referenced by:  pm2.61da3ne  3034  isabvd  20080  xrsxmet  23972  chordthmlem3  25984  mumul  26330  lgsdirnn0  26492  lgsdinn0  26493  lfl1dim  37135  lfl1dim2N  37136  pmodlem2  37861  cdlemg29  38719  cdlemg39  38730  cdlemg44b  38746  dia2dimlem9  39086  dihprrn  39440  dvh3dim  39460  lcfl9a  39519  lclkrlem2l  39532  lcfrlem42  39598  mapdh6kN  39760  hdmap1l6k  39834
  Copyright terms: Public domain W3C validator