MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3036
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 714 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 467 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3035 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3035 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2947
This theorem is referenced by:  pm2.61da3ne  3037  isabvd  20835  xrsxmet  24850  chordthmlem3  26895  mumul  27242  lgsdirnn0  27406  lgsdinn0  27407  constrrtcc  33726  lfl1dim  39077  lfl1dim2N  39078  pmodlem2  39804  cdlemg29  40662  cdlemg39  40673  cdlemg44b  40689  dia2dimlem9  41029  dihprrn  41383  dvh3dim  41403  lcfl9a  41462  lclkrlem2l  41475  lcfrlem42  41541  mapdh6kN  41703  hdmap1l6k  41777
  Copyright terms: Public domain W3C validator