Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version |
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
Ref | Expression |
---|---|
pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
Ref | Expression |
---|---|
pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
3 | 2 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
5 | 4 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
6 | 3, 5 | pm2.61dane 3032 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
7 | 1, 6 | pm2.61dane 3032 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2944 |
This theorem is referenced by: pm2.61da3ne 3034 isabvd 20080 xrsxmet 23972 chordthmlem3 25984 mumul 26330 lgsdirnn0 26492 lgsdinn0 26493 lfl1dim 37135 lfl1dim2N 37136 pmodlem2 37861 cdlemg29 38719 cdlemg39 38730 cdlemg44b 38746 dia2dimlem9 39086 dihprrn 39440 dvh3dim 39460 lcfl9a 39519 lclkrlem2l 39532 lcfrlem42 39598 mapdh6kN 39760 hdmap1l6k 39834 |
Copyright terms: Public domain | W3C validator |