MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3013
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 467 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3012 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3012 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2926
This theorem is referenced by:  pm2.61da3ne  3014  isabvd  20697  xrsxmet  24696  chordthmlem3  26742  mumul  27089  lgsdirnn0  27253  lgsdinn0  27254  constrrtcc  33708  lfl1dim  39110  lfl1dim2N  39111  pmodlem2  39836  cdlemg29  40694  cdlemg39  40705  cdlemg44b  40721  dia2dimlem9  41061  dihprrn  41415  dvh3dim  41435  lcfl9a  41494  lclkrlem2l  41507  lcfrlem42  41573  mapdh6kN  41735  hdmap1l6k  41809
  Copyright terms: Public domain W3C validator