MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3016
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 467 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3015 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3015 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2929
This theorem is referenced by:  pm2.61da3ne  3017  isabvd  20727  xrsxmet  24725  chordthmlem3  26771  mumul  27118  lgsdirnn0  27282  lgsdinn0  27283  constrrtcc  33748  lfl1dim  39230  lfl1dim2N  39231  pmodlem2  39956  cdlemg29  40814  cdlemg39  40825  cdlemg44b  40841  dia2dimlem9  41181  dihprrn  41535  dvh3dim  41555  lcfl9a  41614  lclkrlem2l  41627  lcfrlem42  41693  mapdh6kN  41855  hdmap1l6k  41929
  Copyright terms: Public domain W3C validator