Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version |
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
Ref | Expression |
---|---|
pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
Ref | Expression |
---|---|
pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
3 | 2 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
5 | 4 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
6 | 3, 5 | pm2.61dane 3034 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
7 | 1, 6 | pm2.61dane 3034 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ≠ wne 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2946 |
This theorem is referenced by: pm2.61da3ne 3036 isabvd 20078 xrsxmet 23970 chordthmlem3 25982 mumul 26328 lgsdirnn0 26490 lgsdinn0 26491 lfl1dim 37131 lfl1dim2N 37132 pmodlem2 37857 cdlemg29 38715 cdlemg39 38726 cdlemg44b 38742 dia2dimlem9 39082 dihprrn 39436 dvh3dim 39456 lcfl9a 39515 lclkrlem2l 39528 lcfrlem42 39594 mapdh6kN 39756 hdmap1l6k 39830 |
Copyright terms: Public domain | W3C validator |