MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61da2ne Structured version   Visualization version   GIF version

Theorem pm2.61da2ne 3020
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
pm2.61da2ne.1 ((𝜑𝐴 = 𝐵) → 𝜓)
pm2.61da2ne.2 ((𝜑𝐶 = 𝐷) → 𝜓)
pm2.61da2ne.3 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
Assertion
Ref Expression
pm2.61da2ne (𝜑𝜓)

Proof of Theorem pm2.61da2ne
StepHypRef Expression
1 pm2.61da2ne.1 . 2 ((𝜑𝐴 = 𝐵) → 𝜓)
2 pm2.61da2ne.2 . . . 4 ((𝜑𝐶 = 𝐷) → 𝜓)
32adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶 = 𝐷) → 𝜓)
4 pm2.61da2ne.3 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐷)) → 𝜓)
54anassrs 467 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐷) → 𝜓)
63, 5pm2.61dane 3019 . 2 ((𝜑𝐴𝐵) → 𝜓)
71, 6pm2.61dane 3019 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2933
This theorem is referenced by:  pm2.61da3ne  3021  isabvd  20772  xrsxmet  24749  chordthmlem3  26796  mumul  27143  lgsdirnn0  27307  lgsdinn0  27308  constrrtcc  33769  lfl1dim  39139  lfl1dim2N  39140  pmodlem2  39866  cdlemg29  40724  cdlemg39  40735  cdlemg44b  40751  dia2dimlem9  41091  dihprrn  41445  dvh3dim  41465  lcfl9a  41524  lclkrlem2l  41537  lcfrlem42  41603  mapdh6kN  41765  hdmap1l6k  41839
  Copyright terms: Public domain W3C validator