| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
| pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
| pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
| 2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
| 3 | 2 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
| 4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
| 6 | 3, 5 | pm2.61dane 3012 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| 7 | 1, 6 | pm2.61dane 3012 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 |
| This theorem is referenced by: pm2.61da3ne 3014 isabvd 20721 xrsxmet 24698 chordthmlem3 26744 mumul 27091 lgsdirnn0 27255 lgsdinn0 27256 constrrtcc 33725 lfl1dim 39114 lfl1dim2N 39115 pmodlem2 39841 cdlemg29 40699 cdlemg39 40710 cdlemg44b 40726 dia2dimlem9 41066 dihprrn 41420 dvh3dim 41440 lcfl9a 41499 lclkrlem2l 41512 lcfrlem42 41578 mapdh6kN 41740 hdmap1l6k 41814 |
| Copyright terms: Public domain | W3C validator |