![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdsymi | Structured version Visualization version GIF version |
Description: M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdsym.1 | ⊢ 𝐴 ∈ Cℋ |
mdsym.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
mdsymi | ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsym.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | choccli 28865 | . . . 4 ⊢ (⊥‘𝐵) ∈ Cℋ |
3 | mdsym.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
4 | 3 | choccli 28865 | . . . 4 ⊢ (⊥‘𝐴) ∈ Cℋ |
5 | eqid 2779 | . . . 4 ⊢ ((⊥‘𝐵) ∨ℋ 𝑥) = ((⊥‘𝐵) ∨ℋ 𝑥) | |
6 | 2, 4, 5 | mdsymlem8 29968 | . . 3 ⊢ (((⊥‘𝐵) ≠ 0ℋ ∧ (⊥‘𝐴) ≠ 0ℋ) → ((⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵) ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴))) |
7 | mddmd 29859 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | |
8 | 3, 1, 7 | mp2an 679 | . . 3 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵)) |
9 | mddmd 29859 | . . . 4 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 𝑀ℋ 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴))) | |
10 | 1, 3, 9 | mp2an 679 | . . 3 ⊢ (𝐵 𝑀ℋ 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴)) |
11 | 6, 8, 10 | 3bitr4g 306 | . 2 ⊢ (((⊥‘𝐵) ≠ 0ℋ ∧ (⊥‘𝐴) ≠ 0ℋ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
12 | 3 | chssii 28787 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
13 | fveq2 6499 | . . . . 5 ⊢ ((⊥‘𝐵) = 0ℋ → (⊥‘(⊥‘𝐵)) = (⊥‘0ℋ)) | |
14 | 1 | pjococi 28995 | . . . . 5 ⊢ (⊥‘(⊥‘𝐵)) = 𝐵 |
15 | choc0 28884 | . . . . 5 ⊢ (⊥‘0ℋ) = ℋ | |
16 | 13, 14, 15 | 3eqtr3g 2838 | . . . 4 ⊢ ((⊥‘𝐵) = 0ℋ → 𝐵 = ℋ) |
17 | 12, 16 | syl5sseqr 3911 | . . 3 ⊢ ((⊥‘𝐵) = 0ℋ → 𝐴 ⊆ 𝐵) |
18 | ssmd1 29869 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | |
19 | 3, 1, 18 | mp3an12 1430 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ 𝐵) |
20 | ssmd2 29870 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | |
21 | 3, 1, 20 | mp3an12 1430 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐵 𝑀ℋ 𝐴) |
22 | 19, 21 | jca 504 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴)) |
23 | pm5.1 812 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | |
24 | 17, 22, 23 | 3syl 18 | . 2 ⊢ ((⊥‘𝐵) = 0ℋ → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
25 | 1 | chssii 28787 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
26 | fveq2 6499 | . . . . 5 ⊢ ((⊥‘𝐴) = 0ℋ → (⊥‘(⊥‘𝐴)) = (⊥‘0ℋ)) | |
27 | 3 | pjococi 28995 | . . . . 5 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
28 | 26, 27, 15 | 3eqtr3g 2838 | . . . 4 ⊢ ((⊥‘𝐴) = 0ℋ → 𝐴 = ℋ) |
29 | 25, 28 | syl5sseqr 3911 | . . 3 ⊢ ((⊥‘𝐴) = 0ℋ → 𝐵 ⊆ 𝐴) |
30 | ssmd2 29870 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴) → 𝐴 𝑀ℋ 𝐵) | |
31 | 1, 3, 30 | mp3an12 1430 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐴 𝑀ℋ 𝐵) |
32 | ssmd1 29869 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴) → 𝐵 𝑀ℋ 𝐴) | |
33 | 1, 3, 32 | mp3an12 1430 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 𝑀ℋ 𝐴) |
34 | 31, 33 | jca 504 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴)) |
35 | 29, 34, 23 | 3syl 18 | . 2 ⊢ ((⊥‘𝐴) = 0ℋ → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
36 | 11, 24, 35 | pm2.61iine 3059 | 1 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2968 ⊆ wss 3830 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 ℋchba 28475 Cℋ cch 28485 ⊥cort 28486 ∨ℋ chj 28489 0ℋc0h 28491 𝑀ℋ cmd 28522 𝑀ℋ* cdmd 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cc 9655 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 ax-hilex 28555 ax-hfvadd 28556 ax-hvcom 28557 ax-hvass 28558 ax-hv0cl 28559 ax-hvaddid 28560 ax-hfvmul 28561 ax-hvmulid 28562 ax-hvmulass 28563 ax-hvdistr1 28564 ax-hvdistr2 28565 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his2 28639 ax-his3 28640 ax-his4 28641 ax-hcompl 28758 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-omul 7910 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-acn 9165 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-rlim 14707 df-sum 14904 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cld 21331 df-ntr 21332 df-cls 21333 df-nei 21410 df-cn 21539 df-cnp 21540 df-lm 21541 df-haus 21627 df-tx 21874 df-hmeo 22067 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-xms 22633 df-ms 22634 df-tms 22635 df-cfil 23561 df-cau 23562 df-cmet 23563 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-vs 28153 df-nmcv 28154 df-ims 28155 df-dip 28255 df-ssp 28276 df-ph 28367 df-cbn 28418 df-hnorm 28524 df-hba 28525 df-hvsub 28527 df-hlim 28528 df-hcau 28529 df-sh 28763 df-ch 28777 df-oc 28808 df-ch0 28809 df-shs 28866 df-span 28867 df-chj 28868 df-chsup 28869 df-pjh 28953 df-cv 29837 df-md 29838 df-dmd 29839 df-at 29896 |
This theorem is referenced by: mdsym 29970 |
Copyright terms: Public domain | W3C validator |