Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > mdsymi | Structured version Visualization version GIF version |
Description: M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdsym.1 | ⊢ 𝐴 ∈ Cℋ |
mdsym.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
mdsymi | ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsym.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | choccli 29870 | . . . 4 ⊢ (⊥‘𝐵) ∈ Cℋ |
3 | mdsym.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
4 | 3 | choccli 29870 | . . . 4 ⊢ (⊥‘𝐴) ∈ Cℋ |
5 | eqid 2736 | . . . 4 ⊢ ((⊥‘𝐵) ∨ℋ 𝑥) = ((⊥‘𝐵) ∨ℋ 𝑥) | |
6 | 2, 4, 5 | mdsymlem8 30973 | . . 3 ⊢ (((⊥‘𝐵) ≠ 0ℋ ∧ (⊥‘𝐴) ≠ 0ℋ) → ((⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵) ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴))) |
7 | mddmd 30864 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | |
8 | 3, 1, 7 | mp2an 689 | . . 3 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵)) |
9 | mddmd 30864 | . . . 4 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 𝑀ℋ 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴))) | |
10 | 1, 3, 9 | mp2an 689 | . . 3 ⊢ (𝐵 𝑀ℋ 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ* (⊥‘𝐴)) |
11 | 6, 8, 10 | 3bitr4g 313 | . 2 ⊢ (((⊥‘𝐵) ≠ 0ℋ ∧ (⊥‘𝐴) ≠ 0ℋ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
12 | 3 | chssii 29794 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
13 | fveq2 6819 | . . . . 5 ⊢ ((⊥‘𝐵) = 0ℋ → (⊥‘(⊥‘𝐵)) = (⊥‘0ℋ)) | |
14 | 1 | pjococi 30000 | . . . . 5 ⊢ (⊥‘(⊥‘𝐵)) = 𝐵 |
15 | choc0 29889 | . . . . 5 ⊢ (⊥‘0ℋ) = ℋ | |
16 | 13, 14, 15 | 3eqtr3g 2799 | . . . 4 ⊢ ((⊥‘𝐵) = 0ℋ → 𝐵 = ℋ) |
17 | 12, 16 | sseqtrrid 3984 | . . 3 ⊢ ((⊥‘𝐵) = 0ℋ → 𝐴 ⊆ 𝐵) |
18 | ssmd1 30874 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | |
19 | 3, 1, 18 | mp3an12 1450 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ 𝐵) |
20 | ssmd2 30875 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | |
21 | 3, 1, 20 | mp3an12 1450 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐵 𝑀ℋ 𝐴) |
22 | 19, 21 | jca 512 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴)) |
23 | pm5.1 821 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | |
24 | 17, 22, 23 | 3syl 18 | . 2 ⊢ ((⊥‘𝐵) = 0ℋ → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
25 | 1 | chssii 29794 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
26 | fveq2 6819 | . . . . 5 ⊢ ((⊥‘𝐴) = 0ℋ → (⊥‘(⊥‘𝐴)) = (⊥‘0ℋ)) | |
27 | 3 | pjococi 30000 | . . . . 5 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
28 | 26, 27, 15 | 3eqtr3g 2799 | . . . 4 ⊢ ((⊥‘𝐴) = 0ℋ → 𝐴 = ℋ) |
29 | 25, 28 | sseqtrrid 3984 | . . 3 ⊢ ((⊥‘𝐴) = 0ℋ → 𝐵 ⊆ 𝐴) |
30 | ssmd2 30875 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴) → 𝐴 𝑀ℋ 𝐵) | |
31 | 1, 3, 30 | mp3an12 1450 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐴 𝑀ℋ 𝐵) |
32 | ssmd1 30874 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴) → 𝐵 𝑀ℋ 𝐴) | |
33 | 1, 3, 32 | mp3an12 1450 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 𝑀ℋ 𝐴) |
34 | 31, 33 | jca 512 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴)) |
35 | 29, 34, 23 | 3syl 18 | . 2 ⊢ ((⊥‘𝐴) = 0ℋ → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) |
36 | 11, 24, 35 | pm2.61iine 3032 | 1 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ℋchba 29482 Cℋ cch 29492 ⊥cort 29493 ∨ℋ chj 29496 0ℋc0h 29498 𝑀ℋ cmd 29529 𝑀ℋ* cdmd 29530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cc 10284 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-addf 11043 ax-mulf 11044 ax-hilex 29562 ax-hfvadd 29563 ax-hvcom 29564 ax-hvass 29565 ax-hv0cl 29566 ax-hvaddid 29567 ax-hfvmul 29568 ax-hvmulid 29569 ax-hvmulass 29570 ax-hvdistr1 29571 ax-hvdistr2 29572 ax-hvmul0 29573 ax-hfi 29642 ax-his1 29645 ax-his2 29646 ax-his3 29647 ax-his4 29648 ax-hcompl 29765 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-omul 8364 df-er 8561 df-map 8680 df-pm 8681 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-fi 9260 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-acn 9791 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-ioo 13176 df-ico 13178 df-icc 13179 df-fz 13333 df-fzo 13476 df-fl 13605 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-rlim 15289 df-sum 15489 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-hom 17075 df-cco 17076 df-rest 17222 df-topn 17223 df-0g 17241 df-gsum 17242 df-topgen 17243 df-pt 17244 df-prds 17247 df-xrs 17302 df-qtop 17307 df-imas 17308 df-xps 17310 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-mulg 18789 df-cntz 19011 df-cmn 19475 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-fbas 20692 df-fg 20693 df-cnfld 20696 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-cld 22268 df-ntr 22269 df-cls 22270 df-nei 22347 df-cn 22476 df-cnp 22477 df-lm 22478 df-haus 22564 df-tx 22811 df-hmeo 23004 df-fil 23095 df-fm 23187 df-flim 23188 df-flf 23189 df-xms 23571 df-ms 23572 df-tms 23573 df-cfil 24517 df-cau 24518 df-cmet 24519 df-grpo 29056 df-gid 29057 df-ginv 29058 df-gdiv 29059 df-ablo 29108 df-vc 29122 df-nv 29155 df-va 29158 df-ba 29159 df-sm 29160 df-0v 29161 df-vs 29162 df-nmcv 29163 df-ims 29164 df-dip 29264 df-ssp 29285 df-ph 29376 df-cbn 29426 df-hnorm 29531 df-hba 29532 df-hvsub 29534 df-hlim 29535 df-hcau 29536 df-sh 29770 df-ch 29784 df-oc 29815 df-ch0 29816 df-shs 29871 df-span 29872 df-chj 29873 df-chsup 29874 df-pjh 29958 df-cv 30842 df-md 30843 df-dmd 30844 df-at 30901 |
This theorem is referenced by: mdsym 30975 |
Copyright terms: Public domain | W3C validator |