MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3039
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2951 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 815 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2953 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2947
This theorem is referenced by:  isdrngd  20787  imadrhmcl  20820  fracfld  33275  qsidomlem2  33446  rprmasso  33518  rtelextdg2lem  33717  2sqr3minply  33738  zarcmplem  33827  expeq1d  42311  remul01  42383  remulinvcom  42408  ricdrng1  42483  prjspersym  42562  prjspreln0  42564  prjspner1  42581  flt0  42592  fltne  42599
  Copyright terms: Public domain W3C validator