![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mteqand | Structured version Visualization version GIF version |
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
Ref | Expression |
---|---|
mteqand.1 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
mteqand.2 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mteqand | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mteqand.1 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
2 | 1 | neneqd 2943 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
3 | mteqand.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | |
4 | 2, 3 | mtand 816 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
5 | 4 | neqned 2945 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2939 |
This theorem is referenced by: isdrngd 20782 imadrhmcl 20815 fracfld 33290 qsidomlem2 33461 rprmasso 33533 rtelextdg2lem 33732 2sqr3minply 33753 zarcmplem 33842 expeq1d 42338 remul01 42414 remulinvcom 42439 ricdrng1 42515 prjspersym 42594 prjspreln0 42596 prjspner1 42613 flt0 42624 fltne 42631 |
Copyright terms: Public domain | W3C validator |