Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mteqand | Structured version Visualization version GIF version |
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
Ref | Expression |
---|---|
mteqand.1 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
mteqand.2 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mteqand | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mteqand.1 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
2 | 1 | neneqd 2948 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
3 | mteqand.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | |
4 | 2, 3 | mtand 813 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
5 | 4 | neqned 2950 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2944 |
This theorem is referenced by: qsidomlem2 31629 zarcmplem 31831 remul01 40390 remulinvcom 40414 prjspersym 40446 prjspreln0 40448 prjspner1 40463 flt0 40474 fltne 40481 |
Copyright terms: Public domain | W3C validator |