| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mteqand | Structured version Visualization version GIF version | ||
| Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
| Ref | Expression |
|---|---|
| mteqand.1 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| mteqand.2 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mteqand | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mteqand.1 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 2 | 1 | neneqd 2933 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
| 3 | mteqand.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | |
| 4 | 2, 3 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 5 | 4 | neqned 2935 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2929 |
| This theorem is referenced by: isdrngd 20678 imadrhmcl 20710 fracfld 33269 qsidomlem2 33413 rprmasso 33485 vr1nz 33549 rtelextdg2lem 33734 2sqr3minply 33788 cos9thpiminplylem2 33791 zarcmplem 33889 expeq1d 42356 remul01 42439 remulinvcom 42465 mulgt0b2d 42510 sn-inelr 42519 ricdrng1 42560 prjspersym 42639 prjspreln0 42641 prjspner1 42658 flt0 42669 fltne 42676 eufunc 49553 |
| Copyright terms: Public domain | W3C validator |