MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3020
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2934 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 815 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2936 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2930
This theorem is referenced by:  isdrngd  20682  imadrhmcl  20714  fracfld  33281  qsidomlem2  33425  rprmasso  33497  vr1nz  33561  rtelextdg2lem  33760  2sqr3minply  33814  cos9thpiminplylem2  33817  zarcmplem  33915  expeq1d  42443  remul01  42526  remulinvcom  42552  mulgt0b2d  42597  sn-inelr  42606  ricdrng1  42647  prjspersym  42726  prjspreln0  42728  prjspner1  42745  flt0  42756  fltne  42763  eufunc  49648
  Copyright terms: Public domain W3C validator