MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3033
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2945 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 814 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2947 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-ne 2941
This theorem is referenced by:  isdrngd  20389  imadrhmcl  20412  qsidomlem2  32567  zarcmplem  32856  ricdrng1  41104  remul01  41281  remulinvcom  41306  prjspersym  41350  prjspreln0  41352  prjspner1  41369  flt0  41380  fltne  41387
  Copyright terms: Public domain W3C validator