MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3022
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2934 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 814 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2936 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-ne 2930
This theorem is referenced by:  isdrngd  20697  imadrhmcl  20725  fracfld  33146  qsidomlem2  33316  rprmasso  33388  2sqr3minply  33575  zarcmplem  33664  ricdrng1  41960  remul01  42141  remulinvcom  42166  prjspersym  42210  prjspreln0  42212  prjspner1  42229  flt0  42240  fltne  42247
  Copyright terms: Public domain W3C validator