| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mteqand | Structured version Visualization version GIF version | ||
| Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
| Ref | Expression |
|---|---|
| mteqand.1 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| mteqand.2 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mteqand | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mteqand.1 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 2 | 1 | neneqd 2938 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
| 3 | mteqand.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | |
| 4 | 2, 3 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 5 | 4 | neqned 2940 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2934 |
| This theorem is referenced by: isdrngd 20730 imadrhmcl 20762 fracfld 33307 qsidomlem2 33473 rprmasso 33545 vr1nz 33608 rtelextdg2lem 33765 2sqr3minply 33819 cos9thpiminplylem2 33822 zarcmplem 33917 expeq1d 42340 remul01 42417 remulinvcom 42442 ricdrng1 42518 prjspersym 42597 prjspreln0 42599 prjspner1 42616 flt0 42627 fltne 42634 eufunc 49374 |
| Copyright terms: Public domain | W3C validator |