MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3016
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2930 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 815 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2932 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2926
This theorem is referenced by:  isdrngd  20674  imadrhmcl  20706  fracfld  33258  qsidomlem2  33424  rprmasso  33496  vr1nz  33559  rtelextdg2lem  33716  2sqr3minply  33770  cos9thpiminplylem2  33773  zarcmplem  33871  expeq1d  42312  remul01  42395  remulinvcom  42421  mulgt0b2d  42466  sn-inelr  42475  ricdrng1  42516  prjspersym  42595  prjspreln0  42597  prjspner1  42614  flt0  42625  fltne  42632  eufunc  49511
  Copyright terms: Public domain W3C validator