| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mteqand | Structured version Visualization version GIF version | ||
| Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
| Ref | Expression |
|---|---|
| mteqand.1 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| mteqand.2 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mteqand | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mteqand.1 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 2 | 1 | neneqd 2934 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
| 3 | mteqand.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | |
| 4 | 2, 3 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 5 | 4 | neqned 2936 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2930 |
| This theorem is referenced by: isdrngd 20682 imadrhmcl 20714 fracfld 33281 qsidomlem2 33425 rprmasso 33497 vr1nz 33561 rtelextdg2lem 33760 2sqr3minply 33814 cos9thpiminplylem2 33817 zarcmplem 33915 expeq1d 42443 remul01 42526 remulinvcom 42552 mulgt0b2d 42597 sn-inelr 42606 ricdrng1 42647 prjspersym 42726 prjspreln0 42728 prjspner1 42745 flt0 42756 fltne 42763 eufunc 49648 |
| Copyright terms: Public domain | W3C validator |