MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mteqand Structured version   Visualization version   GIF version

Theorem mteqand 3031
Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.)
Hypotheses
Ref Expression
mteqand.1 (𝜑𝐶𝐷)
mteqand.2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mteqand (𝜑𝐴𝐵)

Proof of Theorem mteqand
StepHypRef Expression
1 mteqand.1 . . . 4 (𝜑𝐶𝐷)
21neneqd 2943 . . 3 (𝜑 → ¬ 𝐶 = 𝐷)
3 mteqand.2 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
42, 3mtand 816 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
54neqned 2945 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2939
This theorem is referenced by:  isdrngd  20782  imadrhmcl  20815  fracfld  33290  qsidomlem2  33461  rprmasso  33533  rtelextdg2lem  33732  2sqr3minply  33753  zarcmplem  33842  expeq1d  42338  remul01  42414  remulinvcom  42439  ricdrng1  42515  prjspersym  42594  prjspreln0  42596  prjspner1  42613  flt0  42624  fltne  42631
  Copyright terms: Public domain W3C validator