MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekind Structured version   Visualization version   GIF version

Theorem dedekind 11398
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 11207 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . 8 𝑥(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
2 nfv 1914 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
3 nfra1 3266 . . . . . . . 8 𝑥𝑥𝐴𝑦𝐵 𝑥 < 𝑦
41, 2, 3nf3an 1901 . . . . . . 7 𝑥((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
5 nfv 1914 . . . . . . . 8 𝑥 𝑧 ∈ ℝ
6 nfra1 3266 . . . . . . . . 9 𝑥𝑥𝐴 ¬ 𝑧 < 𝑥
7 nfra1 3266 . . . . . . . . 9 𝑥𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)
86, 7nfan 1899 . . . . . . . 8 𝑥(∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
95, 8nfan 1899 . . . . . . 7 𝑥(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
104, 9nfan 1899 . . . . . 6 𝑥(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
11 nfv 1914 . . . . . . . . 9 𝑦(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
12 nfv 1914 . . . . . . . . 9 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
13 nfra2w 3280 . . . . . . . . 9 𝑦𝑥𝐴𝑦𝐵 𝑥 < 𝑦
1411, 12, 13nf3an 1901 . . . . . . . 8 𝑦((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
15 nfv 1914 . . . . . . . 8 𝑦(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
1614, 15nfan 1899 . . . . . . 7 𝑦(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
17 nfv 1914 . . . . . . 7 𝑦 𝑥𝐴
18 simpl2l 1227 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → 𝐴 ⊆ ℝ)
1918sselda 3958 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
20 simplrl 776 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
21 simprrl 780 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴 ¬ 𝑧 < 𝑥)
2221r19.21bi 3234 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → ¬ 𝑧 < 𝑥)
2319, 20, 22nltled 11385 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥𝑧)
2423ex 412 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴𝑥𝑧))
25 simprll 778 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧 ∈ ℝ)
26 simp2r 1201 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ⊆ ℝ)
27 simpr 484 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → 𝑦𝐵)
28 ssel2 3953 . . . . . . . . . . . 12 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
2926, 27, 28syl2an 596 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑦 ∈ ℝ)
30 simpl3 1194 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
31 simp2 1137 . . . . . . . . . . . . . . . 16 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ))
32 rsp 3230 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐵 𝑥 < 𝑦 → (𝑦𝐵𝑥 < 𝑦))
3332com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵 → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
3433adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
35 ssel2 3953 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3635adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
37 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ)
3837sselda 3958 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
39 ltnsym 11333 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4036, 38, 39syl2an2r 685 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4134, 40syld 47 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4241an32s 652 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4342ralimdva 3152 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4431, 27, 43syl2an 596 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4530, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴 ¬ 𝑦 < 𝑥)
46 breq2 5123 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
4746notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
4847cbvralvw 3220 . . . . . . . . . . . . . 14 (∀𝑥𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
4945, 48sylib 218 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
50 ralnex 3062 . . . . . . . . . . . . 13 (∀𝑤𝐴 ¬ 𝑦 < 𝑤 ↔ ¬ ∃𝑤𝐴 𝑦 < 𝑤)
5149, 50sylib 218 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ ∃𝑤𝐴 𝑦 < 𝑤)
52 breq1 5122 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
53 breq1 5122 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 < 𝑤𝑦 < 𝑤))
5453rexbidv 3164 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∃𝑤𝐴 𝑥 < 𝑤 ↔ ∃𝑤𝐴 𝑦 < 𝑤))
5552, 54imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤) ↔ (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤)))
56 simplrr 777 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
5756adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
5855, 57, 29rspcdva 3602 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤))
5951, 58mtod 198 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ 𝑦 < 𝑧)
6025, 29, 59nltled 11385 . . . . . . . . . 10 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧𝑦)
6160expr 456 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑦𝐵𝑧𝑦))
6224, 61anim12d 609 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ((𝑥𝐴𝑦𝐵) → (𝑥𝑧𝑧𝑦)))
6362expd 415 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → (𝑦𝐵 → (𝑥𝑧𝑧𝑦))))
6416, 17, 63ralrimd 3247 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑧𝑧𝑦)))
6510, 64ralrimi 3240 . . . . 5 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
66 simp2l 1200 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ⊆ ℝ)
67 simp1l 1198 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ≠ ∅)
68 simp1r 1199 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ≠ ∅)
69 n0 4328 . . . . . . . . 9 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
7068, 69sylib 218 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 𝑧𝐵)
7126sseld 3957 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵𝑧 ∈ ℝ))
72 ralcom 3270 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ↔ ∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦)
73 breq2 5123 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
7473ralbidv 3163 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∀𝑥𝐴 𝑥 < 𝑦 ↔ ∀𝑥𝐴 𝑥 < 𝑧))
7574rspccv 3598 . . . . . . . . . . . 12 (∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
7672, 75sylbi 217 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
77763ad2ant3 1135 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
7871, 77jcad 512 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → (𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
7978eximdv 1917 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (∃𝑧 𝑧𝐵 → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
8070, 79mpd 15 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
81 df-rex 3061 . . . . . . 7 (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
8280, 81sylibr 234 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧)
83 axsup 11310 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8466, 67, 82, 83syl3anc 1373 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8565, 84reximddv 3156 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
86853expib 1122 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
87 1re 11235 . . . . 5 1 ∈ ℝ
88 rzal 4484 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
89 breq2 5123 . . . . . . . 8 (𝑧 = 1 → (𝑥𝑧𝑥 ≤ 1))
90 breq1 5122 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑦 ↔ 1 ≤ 𝑦))
9189, 90anbi12d 632 . . . . . . 7 (𝑧 = 1 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
92912ralbidv 3205 . . . . . 6 (𝑧 = 1 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
9392rspcev 3601 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9487, 88, 93sylancr 587 . . . 4 (𝐴 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9594a1d 25 . . 3 (𝐴 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
96 rzal 4484 . . . . . 6 (𝐵 = ∅ → ∀𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
9796ralrimivw 3136 . . . . 5 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
9887, 97, 93sylancr 587 . . . 4 (𝐵 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9998a1d 25 . . 3 (𝐵 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
10086, 95, 99pm2.61iine 3022 . 2 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
1011003impa 1109 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  cr 11128  1c1 11130   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  dedekindle  11399
  Copyright terms: Public domain W3C validator