MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekind Structured version   Visualization version   GIF version

Theorem dedekind 10454
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 10267 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 2009 . . . . . . . 8 𝑥(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
2 nfv 2009 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
3 nfra1 3088 . . . . . . . 8 𝑥𝑥𝐴𝑦𝐵 𝑥 < 𝑦
41, 2, 3nf3an 2000 . . . . . . 7 𝑥((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
5 nfv 2009 . . . . . . . 8 𝑥 𝑧 ∈ ℝ
6 nfra1 3088 . . . . . . . . 9 𝑥𝑥𝐴 ¬ 𝑧 < 𝑥
7 nfra1 3088 . . . . . . . . 9 𝑥𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)
86, 7nfan 1998 . . . . . . . 8 𝑥(∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
95, 8nfan 1998 . . . . . . 7 𝑥(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
104, 9nfan 1998 . . . . . 6 𝑥(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
11 nfv 2009 . . . . . . . . 9 𝑦(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
12 nfv 2009 . . . . . . . . 9 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
13 nfra2 3093 . . . . . . . . 9 𝑦𝑥𝐴𝑦𝐵 𝑥 < 𝑦
1411, 12, 13nf3an 2000 . . . . . . . 8 𝑦((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
15 nfv 2009 . . . . . . . 8 𝑦(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
1614, 15nfan 1998 . . . . . . 7 𝑦(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
17 nfv 2009 . . . . . . 7 𝑦 𝑥𝐴
18 simprrl 799 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴 ¬ 𝑧 < 𝑥)
1918r19.21bi 3079 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → ¬ 𝑧 < 𝑥)
20 simpl2l 1297 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → 𝐴 ⊆ ℝ)
2120sselda 3761 . . . . . . . . . . . 12 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
22 simplrl 795 . . . . . . . . . . . 12 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
2321, 22lenltd 10437 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → (𝑥𝑧 ↔ ¬ 𝑧 < 𝑥))
2419, 23mpbird 248 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥𝑧)
2524ex 401 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴𝑥𝑧))
26 simpl3 1246 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
27 simp2 1167 . . . . . . . . . . . . . . . 16 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ))
28 simpr 477 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → 𝑦𝐵)
29 rsp 3076 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐵 𝑥 < 𝑦 → (𝑦𝐵𝑥 < 𝑦))
3029com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵 → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
3130adantl 473 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
32 ssel2 3756 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3332adantlr 706 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3433adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → 𝑥 ∈ ℝ)
35 simplr 785 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ)
3635sselda 3761 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
37 ltnsym 10389 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
3834, 36, 37syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
3931, 38syld 47 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4039an32s 642 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4140ralimdva 3109 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4227, 28, 41syl2an 589 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4326, 42mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴 ¬ 𝑦 < 𝑥)
44 breq2 4813 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
4544notbid 309 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
4645cbvralv 3319 . . . . . . . . . . . . . 14 (∀𝑥𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
4743, 46sylib 209 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
48 ralnex 3139 . . . . . . . . . . . . 13 (∀𝑤𝐴 ¬ 𝑦 < 𝑤 ↔ ¬ ∃𝑤𝐴 𝑦 < 𝑤)
4947, 48sylib 209 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ ∃𝑤𝐴 𝑦 < 𝑤)
50 breq1 4812 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
51 breq1 4812 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 < 𝑤𝑦 < 𝑤))
5251rexbidv 3199 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∃𝑤𝐴 𝑥 < 𝑤 ↔ ∃𝑤𝐴 𝑦 < 𝑤))
5350, 52imbi12d 335 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤) ↔ (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤)))
54 simplrr 796 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
5554adantl 473 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
56 simp2r 1257 . . . . . . . . . . . . . 14 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ⊆ ℝ)
57 ssel2 3756 . . . . . . . . . . . . . 14 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
5856, 28, 57syl2an 589 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑦 ∈ ℝ)
5953, 55, 58rspcdva 3467 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤))
6049, 59mtod 189 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ 𝑦 < 𝑧)
61 simprll 797 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧 ∈ ℝ)
6261, 58lenltd 10437 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (𝑧𝑦 ↔ ¬ 𝑦 < 𝑧))
6360, 62mpbird 248 . . . . . . . . . 10 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧𝑦)
6463expr 448 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑦𝐵𝑧𝑦))
6525, 64anim12d 602 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ((𝑥𝐴𝑦𝐵) → (𝑥𝑧𝑧𝑦)))
6665expd 404 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → (𝑦𝐵 → (𝑥𝑧𝑧𝑦))))
6716, 17, 66ralrimd 3106 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑧𝑧𝑦)))
6810, 67ralrimi 3104 . . . . 5 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
69 simp2l 1256 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ⊆ ℝ)
70 simp1l 1254 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ≠ ∅)
71 simp1r 1255 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ≠ ∅)
72 n0 4095 . . . . . . . . 9 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
7371, 72sylib 209 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 𝑧𝐵)
7456sseld 3760 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵𝑧 ∈ ℝ))
75 ralcom 3245 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ↔ ∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦)
76 breq2 4813 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
7776ralbidv 3133 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∀𝑥𝐴 𝑥 < 𝑦 ↔ ∀𝑥𝐴 𝑥 < 𝑧))
7877rspccv 3458 . . . . . . . . . . . 12 (∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
7975, 78sylbi 208 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
80793ad2ant3 1165 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
8174, 80jcad 508 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → (𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
8281eximdv 2012 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (∃𝑧 𝑧𝐵 → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
8373, 82mpd 15 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
84 df-rex 3061 . . . . . . 7 (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
8583, 84sylibr 225 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧)
86 axsup 10367 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8769, 70, 85, 86syl3anc 1490 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8868, 87reximddv 3164 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
89883expib 1152 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
90 1re 10293 . . . . 5 1 ∈ ℝ
91 rzal 4232 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
92 breq2 4813 . . . . . . . 8 (𝑧 = 1 → (𝑥𝑧𝑥 ≤ 1))
93 breq1 4812 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑦 ↔ 1 ≤ 𝑦))
9492, 93anbi12d 624 . . . . . . 7 (𝑧 = 1 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
95942ralbidv 3136 . . . . . 6 (𝑧 = 1 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
9695rspcev 3461 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9790, 91, 96sylancr 581 . . . 4 (𝐴 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9897a1d 25 . . 3 (𝐴 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
99 rzal 4232 . . . . . 6 (𝐵 = ∅ → ∀𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
10099ralrimivw 3114 . . . . 5 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
10190, 100, 96sylancr 581 . . . 4 (𝐵 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
102101a1d 25 . . 3 (𝐵 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
10389, 98, 102pm2.61iine 3027 . 2 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
1041033impa 1136 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  cr 10188  1c1 10190   < clt 10328  cle 10329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-mulcl 10251  ax-mulrcl 10252  ax-i2m1 10257  ax-1ne0 10258  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334
This theorem is referenced by:  dedekindle  10455
  Copyright terms: Public domain W3C validator