MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekind Structured version   Visualization version   GIF version

Theorem dedekind 11138
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 10949 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . . . 8 𝑥(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
2 nfv 1917 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
3 nfra1 3144 . . . . . . . 8 𝑥𝑥𝐴𝑦𝐵 𝑥 < 𝑦
41, 2, 3nf3an 1904 . . . . . . 7 𝑥((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
5 nfv 1917 . . . . . . . 8 𝑥 𝑧 ∈ ℝ
6 nfra1 3144 . . . . . . . . 9 𝑥𝑥𝐴 ¬ 𝑧 < 𝑥
7 nfra1 3144 . . . . . . . . 9 𝑥𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)
86, 7nfan 1902 . . . . . . . 8 𝑥(∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
95, 8nfan 1902 . . . . . . 7 𝑥(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
104, 9nfan 1902 . . . . . 6 𝑥(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
11 nfv 1917 . . . . . . . . 9 𝑦(𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)
12 nfv 1917 . . . . . . . . 9 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)
13 nfra2w 3154 . . . . . . . . 9 𝑦𝑥𝐴𝑦𝐵 𝑥 < 𝑦
1411, 12, 13nf3an 1904 . . . . . . . 8 𝑦((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
15 nfv 1917 . . . . . . . 8 𝑦(𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
1614, 15nfan 1902 . . . . . . 7 𝑦(((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))))
17 nfv 1917 . . . . . . 7 𝑦 𝑥𝐴
18 simpl2l 1225 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → 𝐴 ⊆ ℝ)
1918sselda 3921 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
20 simplrl 774 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
21 simprrl 778 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴 ¬ 𝑧 < 𝑥)
2221r19.21bi 3134 . . . . . . . . . . 11 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → ¬ 𝑧 < 𝑥)
2319, 20, 22nltled 11125 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) ∧ 𝑥𝐴) → 𝑥𝑧)
2423ex 413 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴𝑥𝑧))
25 simprll 776 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧 ∈ ℝ)
26 simp2r 1199 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ⊆ ℝ)
27 simpr 485 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → 𝑦𝐵)
28 ssel2 3916 . . . . . . . . . . . 12 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
2926, 27, 28syl2an 596 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑦 ∈ ℝ)
30 simpl3 1192 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
31 simp2 1136 . . . . . . . . . . . . . . . 16 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ))
32 rsp 3131 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐵 𝑥 < 𝑦 → (𝑦𝐵𝑥 < 𝑦))
3332com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵 → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
3433adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦𝑥 < 𝑦))
35 ssel2 3916 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3635adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
37 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ)
3837sselda 3921 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
39 ltnsym 11073 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4036, 38, 39syl2an2r 682 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4134, 40syld 47 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4241an32s 649 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (∀𝑦𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥))
4342ralimdva 3108 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ 𝑦𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4431, 27, 43syl2an 596 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → ∀𝑥𝐴 ¬ 𝑦 < 𝑥))
4530, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥𝐴 ¬ 𝑦 < 𝑥)
46 breq2 5078 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
4746notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
4847cbvralvw 3383 . . . . . . . . . . . . . 14 (∀𝑥𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
4945, 48sylib 217 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑤𝐴 ¬ 𝑦 < 𝑤)
50 ralnex 3167 . . . . . . . . . . . . 13 (∀𝑤𝐴 ¬ 𝑦 < 𝑤 ↔ ¬ ∃𝑤𝐴 𝑦 < 𝑤)
5149, 50sylib 217 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ ∃𝑤𝐴 𝑦 < 𝑤)
52 breq1 5077 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
53 breq1 5077 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 < 𝑤𝑦 < 𝑤))
5453rexbidv 3226 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∃𝑤𝐴 𝑥 < 𝑤 ↔ ∃𝑤𝐴 𝑦 < 𝑤))
5552, 54imbi12d 345 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤) ↔ (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤)))
56 simplrr 775 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
5756adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))
5855, 57, 29rspcdva 3562 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → (𝑦 < 𝑧 → ∃𝑤𝐴 𝑦 < 𝑤))
5951, 58mtod 197 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → ¬ 𝑦 < 𝑧)
6025, 29, 59nltled 11125 . . . . . . . . . 10 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ ((𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤))) ∧ 𝑦𝐵)) → 𝑧𝑦)
6160expr 457 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑦𝐵𝑧𝑦))
6224, 61anim12d 609 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ((𝑥𝐴𝑦𝐵) → (𝑥𝑧𝑧𝑦)))
6362expd 416 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → (𝑦𝐵 → (𝑥𝑧𝑧𝑦))))
6416, 17, 63ralrimd 3143 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑧𝑧𝑦)))
6510, 64ralrimi 3141 . . . . 5 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) ∧ (𝑧 ∈ ℝ ∧ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
66 simp2l 1198 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ⊆ ℝ)
67 simp1l 1196 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐴 ≠ ∅)
68 simp1r 1197 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → 𝐵 ≠ ∅)
69 n0 4280 . . . . . . . . 9 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
7068, 69sylib 217 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 𝑧𝐵)
7126sseld 3920 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵𝑧 ∈ ℝ))
72 ralcom 3166 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ↔ ∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦)
73 breq2 5078 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
7473ralbidv 3112 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∀𝑥𝐴 𝑥 < 𝑦 ↔ ∀𝑥𝐴 𝑥 < 𝑧))
7574rspccv 3558 . . . . . . . . . . . 12 (∀𝑦𝐵𝑥𝐴 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
7672, 75sylbi 216 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦 → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
77763ad2ant3 1134 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → ∀𝑥𝐴 𝑥 < 𝑧))
7871, 77jcad 513 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (𝑧𝐵 → (𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
7978eximdv 1920 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → (∃𝑧 𝑧𝐵 → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧)))
8070, 79mpd 15 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
81 df-rex 3070 . . . . . . 7 (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑥𝐴 𝑥 < 𝑧))
8280, 81sylibr 233 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧)
83 axsup 11050 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑥 < 𝑧) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8466, 67, 82, 83syl3anc 1370 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ (∀𝑥𝐴 ¬ 𝑧 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝑧 → ∃𝑤𝐴 𝑥 < 𝑤)))
8565, 84reximddv 3204 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
86853expib 1121 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
87 1re 10975 . . . . 5 1 ∈ ℝ
88 rzal 4439 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
89 breq2 5078 . . . . . . . 8 (𝑧 = 1 → (𝑥𝑧𝑥 ≤ 1))
90 breq1 5077 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑦 ↔ 1 ≤ 𝑦))
9189, 90anbi12d 631 . . . . . . 7 (𝑧 = 1 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
92912ralbidv 3129 . . . . . 6 (𝑧 = 1 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)))
9392rspcev 3561 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9487, 88, 93sylancr 587 . . . 4 (𝐴 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9594a1d 25 . . 3 (𝐴 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
96 rzal 4439 . . . . . 6 (𝐵 = ∅ → ∀𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
9796ralrimivw 3104 . . . . 5 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 (𝑥 ≤ 1 ∧ 1 ≤ 𝑦))
9887, 97, 93sylancr 587 . . . 4 (𝐵 = ∅ → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
9998a1d 25 . . 3 (𝐵 = ∅ → (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
10086, 95, 99pm2.61iine 3035 . 2 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
1011003impa 1109 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  cr 10870  1c1 10872   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  dedekindle  11139
  Copyright terms: Public domain W3C validator