MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfiun Structured version   Visualization version   GIF version

Theorem elfiun 8578
Description: A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
Assertion
Ref Expression
elfiun ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐾,𝑦

Proof of Theorem elfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3413 . . . 4 (𝐴 ∈ (fi‘(𝐵𝐶)) → 𝐴 ∈ V)
21adantl 469 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐴 ∈ V)
3 simpll 774 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐵𝐷)
4 simplr 776 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐶𝐾)
52, 3, 43jca 1151 . 2 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
6 elex 3413 . . . . . 6 (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)
763anim1i 1184 . . . . 5 ((𝐴 ∈ (fi‘𝐵) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
873expib 1145 . . . 4 (𝐴 ∈ (fi‘𝐵) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
9 elex 3413 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ V)
1093anim1i 1184 . . . . 5 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
11103expib 1145 . . . 4 (𝐴 ∈ (fi‘𝐶) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
12 vex 3401 . . . . . . . . . 10 𝑥 ∈ V
1312inex1 5001 . . . . . . . . 9 (𝑥𝑦) ∈ V
14 eleq1 2880 . . . . . . . . 9 (𝐴 = (𝑥𝑦) → (𝐴 ∈ V ↔ (𝑥𝑦) ∈ V))
1513, 14mpbiri 249 . . . . . . . 8 (𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
1615a1i 11 . . . . . . 7 ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ V))
1716rexlimivv 3231 . . . . . 6 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
18173anim1i 1184 . . . . 5 ((∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
19183expib 1145 . . . 4 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
208, 11, 193jaoi 1545 . . 3 ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
2120impcom 396 . 2 (((𝐵𝐷𝐶𝐾) ∧ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
22 simp1 1159 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → 𝐴 ∈ V)
23 unexg 7192 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
24233adant1 1153 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
25 elfi 8561 . . . . 5 ((𝐴 ∈ V ∧ (𝐵𝐶) ∈ V) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
2622, 24, 25syl2anc 575 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
27 simpl1 1235 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → 𝐴 ∈ V)
28 eleq1 2880 . . . . . . . 8 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ∈ V))
29 intex 5019 . . . . . . . 8 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
3028, 29syl6bbr 280 . . . . . . 7 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ≠ ∅))
3127, 30syl5ibcom 236 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧𝑧 ≠ ∅))
32 simp22 1257 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
33 inss2 4037 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝐵
3433a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ⊆ 𝐵)
35 simp1l 1247 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ≠ ∅)
36 simp3l 1251 . . . . . . . . . . . . . . . 16 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
37 inss2 4037 . . . . . . . . . . . . . . . . 17 (𝒫 (𝐵𝐶) ∩ Fin) ⊆ Fin
3837sseli 3801 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ∈ Fin)
3936, 38syl 17 . . . . . . . . . . . . . . 15 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
40 inss1 4036 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝑧
41 ssfi 8422 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐵) ⊆ 𝑧) → (𝑧𝐵) ∈ Fin)
4239, 40, 41sylancl 576 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ Fin)
43 elfir 8563 . . . . . . . . . . . . . 14 ((𝐵𝐷 ∧ ((𝑧𝐵) ⊆ 𝐵 ∧ (𝑧𝐵) ≠ ∅ ∧ (𝑧𝐵) ∈ Fin)) → (𝑧𝐵) ∈ (fi‘𝐵))
4432, 34, 35, 42, 43syl13anc 1484 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ (fi‘𝐵))
45 simp23 1258 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
46 inss2 4037 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝐶
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ⊆ 𝐶)
48 simp1r 1248 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ≠ ∅)
49 inss1 4036 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝑧
50 ssfi 8422 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐶) ⊆ 𝑧) → (𝑧𝐶) ∈ Fin)
5139, 49, 50sylancl 576 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ Fin)
52 elfir 8563 . . . . . . . . . . . . . 14 ((𝐶𝐾 ∧ ((𝑧𝐶) ⊆ 𝐶 ∧ (𝑧𝐶) ≠ ∅ ∧ (𝑧𝐶) ∈ Fin)) → (𝑧𝐶) ∈ (fi‘𝐶))
5345, 47, 48, 51, 52syl13anc 1484 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ (fi‘𝐶))
54 inss1 4036 . . . . . . . . . . . . . . . 16 (𝒫 (𝐵𝐶) ∩ Fin) ⊆ 𝒫 (𝐵𝐶)
5554sseli 3801 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ∈ 𝒫 (𝐵𝐶))
5655elpwid 4370 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ⊆ (𝐵𝐶))
57 indi 4082 . . . . . . . . . . . . . . . . 17 (𝑧 ∩ (𝐵𝐶)) = ((𝑧𝐵) ∪ (𝑧𝐶))
58 df-ss 3790 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ (𝐵𝐶) ↔ (𝑧 ∩ (𝐵𝐶)) = 𝑧)
5958biimpi 207 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (𝐵𝐶) → (𝑧 ∩ (𝐵𝐶)) = 𝑧)
6057, 59syl5reqr 2862 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
6160inteqd 4681 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
62 intun 4708 . . . . . . . . . . . . . . 15 ((𝑧𝐵) ∪ (𝑧𝐶)) = ( (𝑧𝐵) ∩ (𝑧𝐶))
6361, 62syl6eq 2863 . . . . . . . . . . . . . 14 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6436, 56, 633syl 18 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
65 ineq1 4013 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧𝐵) → (𝑥𝑦) = ( (𝑧𝐵) ∩ 𝑦))
6665eqeq2d 2823 . . . . . . . . . . . . . 14 (𝑥 = (𝑧𝐵) → ( 𝑧 = (𝑥𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ 𝑦)))
67 ineq2 4014 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐶) → ( (𝑧𝐵) ∩ 𝑦) = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6867eqeq2d 2823 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐶) → ( 𝑧 = ( (𝑧𝐵) ∩ 𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))))
6966, 68rspc2ev 3524 . . . . . . . . . . . . 13 (( (𝑧𝐵) ∈ (fi‘𝐵) ∧ (𝑧𝐶) ∈ (fi‘𝐶) ∧ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
7044, 53, 64, 69syl3anc 1483 . . . . . . . . . . . 12 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
71703mix3d 1430 . . . . . . . . . . 11 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
72713expib 1145 . . . . . . . . . 10 (((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
73 simp23 1258 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
74 simp1 1159 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) = ∅)
75 simp3l 1251 . . . . . . . . . . . . . . . 16 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
76 reldisj 4224 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7775, 56, 763syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7874, 77mpbid 223 . . . . . . . . . . . . . 14 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵))
79 uncom 3963 . . . . . . . . . . . . . . . . 17 (𝐵𝐶) = (𝐶𝐵)
8079difeq1i 3930 . . . . . . . . . . . . . . . 16 ((𝐵𝐶) ∖ 𝐵) = ((𝐶𝐵) ∖ 𝐵)
81 difun2 4251 . . . . . . . . . . . . . . . 16 ((𝐶𝐵) ∖ 𝐵) = (𝐶𝐵)
8280, 81eqtri 2835 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐵) = (𝐶𝐵)
83 difss 3943 . . . . . . . . . . . . . . 15 (𝐶𝐵) ⊆ 𝐶
8482, 83eqsstri 3839 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐵) ⊆ 𝐶
8578, 84syl6ss 3817 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐶)
86 simp3r 1252 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
8775, 38syl 17 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
88 elfir 8563 . . . . . . . . . . . . 13 ((𝐶𝐾 ∧ (𝑧𝐶𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐶))
8973, 85, 86, 87, 88syl13anc 1484 . . . . . . . . . . . 12 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐶))
90893mix2d 1429 . . . . . . . . . . 11 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
91903expib 1145 . . . . . . . . . 10 ((𝑧𝐵) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
92 simp22 1257 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
93 simp1 1159 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) = ∅)
94 simp3l 1251 . . . . . . . . . . . . . . . 16 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
95 reldisj 4224 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9694, 56, 953syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9793, 96mpbid 223 . . . . . . . . . . . . . 14 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶))
98 difun2 4251 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐶) = (𝐵𝐶)
99 difss 3943 . . . . . . . . . . . . . . 15 (𝐵𝐶) ⊆ 𝐵
10098, 99eqsstri 3839 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐶) ⊆ 𝐵
10197, 100syl6ss 3817 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐵)
102 simp3r 1252 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
10394, 38syl 17 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
104 elfir 8563 . . . . . . . . . . . . 13 ((𝐵𝐷 ∧ (𝑧𝐵𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐵))
10592, 101, 102, 103, 104syl13anc 1484 . . . . . . . . . . . 12 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐵))
1061053mix1d 1428 . . . . . . . . . . 11 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
1071063expib 1145 . . . . . . . . . 10 ((𝑧𝐶) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
10872, 91, 107pm2.61iine 3075 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
109 eleq1 2880 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ↔ 𝑧 ∈ (fi‘𝐵)))
110 eleq1 2880 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐶) ↔ 𝑧 ∈ (fi‘𝐶)))
111 eqeq1 2817 . . . . . . . . . . 11 (𝐴 = 𝑧 → (𝐴 = (𝑥𝑦) ↔ 𝑧 = (𝑥𝑦)))
1121112rexbidv 3252 . . . . . . . . . 10 (𝐴 = 𝑧 → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ↔ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
113109, 110, 1123orbi123d 1552 . . . . . . . . 9 (𝐴 = 𝑧 → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) ↔ ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
114108, 113syl5ibrcom 238 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
115114expr 446 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝑧 ≠ ∅ → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
116115com23 86 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝑧 ≠ ∅ → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
11731, 116mpdd 43 . . . . 5 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
118117rexlimdva 3226 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
11926, 118sylbid 231 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
120 ssun1 3982 . . . . . . 7 𝐵 ⊆ (𝐵𝐶)
121 fiss 8572 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐵 ⊆ (𝐵𝐶)) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
12223, 120, 121sylancl 576 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
1231223adant1 1153 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
124123sseld 3804 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ (fi‘(𝐵𝐶))))
125 ssun2 3983 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
126 fiss 8572 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐶 ⊆ (𝐵𝐶)) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
12723, 125, 126sylancl 576 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
1281273adant1 1153 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
129128sseld 3804 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ (fi‘(𝐵𝐶))))
130123sseld 3804 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑥 ∈ (fi‘𝐵) → 𝑥 ∈ (fi‘(𝐵𝐶))))
131128sseld 3804 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑦 ∈ (fi‘𝐶) → 𝑦 ∈ (fi‘(𝐵𝐶))))
132130, 131anim12d 598 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶)))))
133 fiin 8570 . . . . . . 7 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝑥𝑦) ∈ (fi‘(𝐵𝐶)))
134 eleq1a 2887 . . . . . . 7 ((𝑥𝑦) ∈ (fi‘(𝐵𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
135133, 134syl 17 . . . . . 6 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
136132, 135syl6 35 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶)))))
137136rexlimdvv 3232 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
138124, 129, 1373jaod 1546 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → 𝐴 ∈ (fi‘(𝐵𝐶))))
139119, 138impbid 203 . 2 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
1405, 21, 139pm5.21nd 827 1 ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3o 1099  w3a 1100   = wceq 1637  wcel 2157  wne 2985  wrex 3104  Vcvv 3398  cdif 3773  cun 3774  cin 3775  wss 3776  c0 4123  𝒫 cpw 4358   cint 4676  cfv 6104  Fincfn 8195  ficfi 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-fin 8199  df-fi 8559
This theorem is referenced by:  ordtbas2  21213  ordtbas  21214  fbunfip  21890  fmfnfmlem4  21978
  Copyright terms: Public domain W3C validator