MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfiun Structured version   Visualization version   GIF version

Theorem elfiun 9373
Description: A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
Assertion
Ref Expression
elfiun ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐾,𝑦

Proof of Theorem elfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3466 . . . 4 (𝐴 ∈ (fi‘(𝐵𝐶)) → 𝐴 ∈ V)
21adantl 483 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐴 ∈ V)
3 simpll 766 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐵𝐷)
4 simplr 768 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐶𝐾)
52, 3, 43jca 1129 . 2 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
6 elex 3466 . . . . . 6 (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)
763anim1i 1153 . . . . 5 ((𝐴 ∈ (fi‘𝐵) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
873expib 1123 . . . 4 (𝐴 ∈ (fi‘𝐵) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
9 elex 3466 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ V)
1093anim1i 1153 . . . . 5 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
11103expib 1123 . . . 4 (𝐴 ∈ (fi‘𝐶) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
12 vex 3452 . . . . . . . . . 10 𝑥 ∈ V
1312inex1 5279 . . . . . . . . 9 (𝑥𝑦) ∈ V
14 eleq1 2826 . . . . . . . . 9 (𝐴 = (𝑥𝑦) → (𝐴 ∈ V ↔ (𝑥𝑦) ∈ V))
1513, 14mpbiri 258 . . . . . . . 8 (𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
1615a1i 11 . . . . . . 7 ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ V))
1716rexlimivv 3197 . . . . . 6 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
18173anim1i 1153 . . . . 5 ((∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
19183expib 1123 . . . 4 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
208, 11, 193jaoi 1428 . . 3 ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
2120impcom 409 . 2 (((𝐵𝐷𝐶𝐾) ∧ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
22 simp1 1137 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → 𝐴 ∈ V)
23 unexg 7688 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
24233adant1 1131 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
25 elfi 9356 . . . . 5 ((𝐴 ∈ V ∧ (𝐵𝐶) ∈ V) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
2622, 24, 25syl2anc 585 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
27 simpl1 1192 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → 𝐴 ∈ V)
28 eleq1 2826 . . . . . . . 8 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ∈ V))
29 intex 5299 . . . . . . . 8 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
3028, 29bitr4di 289 . . . . . . 7 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ≠ ∅))
3127, 30syl5ibcom 244 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧𝑧 ≠ ∅))
32 simp22 1208 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
33 inss2 4194 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝐵
3433a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ⊆ 𝐵)
35 simp1l 1198 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ≠ ∅)
36 simp3l 1202 . . . . . . . . . . . . . . . 16 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
3736elin2d 4164 . . . . . . . . . . . . . . 15 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
38 inss1 4193 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝑧
39 ssfi 9124 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐵) ⊆ 𝑧) → (𝑧𝐵) ∈ Fin)
4037, 38, 39sylancl 587 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ Fin)
41 elfir 9358 . . . . . . . . . . . . . 14 ((𝐵𝐷 ∧ ((𝑧𝐵) ⊆ 𝐵 ∧ (𝑧𝐵) ≠ ∅ ∧ (𝑧𝐵) ∈ Fin)) → (𝑧𝐵) ∈ (fi‘𝐵))
4232, 34, 35, 40, 41syl13anc 1373 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ (fi‘𝐵))
43 simp23 1209 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
44 inss2 4194 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝐶
4544a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ⊆ 𝐶)
46 simp1r 1199 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ≠ ∅)
47 inss1 4193 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝑧
48 ssfi 9124 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐶) ⊆ 𝑧) → (𝑧𝐶) ∈ Fin)
4937, 47, 48sylancl 587 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ Fin)
50 elfir 9358 . . . . . . . . . . . . . 14 ((𝐶𝐾 ∧ ((𝑧𝐶) ⊆ 𝐶 ∧ (𝑧𝐶) ≠ ∅ ∧ (𝑧𝐶) ∈ Fin)) → (𝑧𝐶) ∈ (fi‘𝐶))
5143, 45, 46, 49, 50syl13anc 1373 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ (fi‘𝐶))
52 elinel1 4160 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ∈ 𝒫 (𝐵𝐶))
5352elpwid 4574 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ⊆ (𝐵𝐶))
54 df-ss 3932 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ (𝐵𝐶) ↔ (𝑧 ∩ (𝐵𝐶)) = 𝑧)
5554biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (𝐵𝐶) → (𝑧 ∩ (𝐵𝐶)) = 𝑧)
56 indi 4238 . . . . . . . . . . . . . . . . 17 (𝑧 ∩ (𝐵𝐶)) = ((𝑧𝐵) ∪ (𝑧𝐶))
5755, 56eqtr3di 2792 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
5857inteqd 4917 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
59 intun 4946 . . . . . . . . . . . . . . 15 ((𝑧𝐵) ∪ (𝑧𝐶)) = ( (𝑧𝐵) ∩ (𝑧𝐶))
6058, 59eqtrdi 2793 . . . . . . . . . . . . . 14 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6136, 53, 603syl 18 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
62 ineq1 4170 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧𝐵) → (𝑥𝑦) = ( (𝑧𝐵) ∩ 𝑦))
6362eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑥 = (𝑧𝐵) → ( 𝑧 = (𝑥𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ 𝑦)))
64 ineq2 4171 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐶) → ( (𝑧𝐵) ∩ 𝑦) = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6564eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐶) → ( 𝑧 = ( (𝑧𝐵) ∩ 𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))))
6663, 65rspc2ev 3595 . . . . . . . . . . . . 13 (( (𝑧𝐵) ∈ (fi‘𝐵) ∧ (𝑧𝐶) ∈ (fi‘𝐶) ∧ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
6742, 51, 61, 66syl3anc 1372 . . . . . . . . . . . 12 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
68673mix3d 1339 . . . . . . . . . . 11 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
69683expib 1123 . . . . . . . . . 10 (((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
70 simp23 1209 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
71 simp1 1137 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) = ∅)
72 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
73 reldisj 4416 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7472, 53, 733syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7571, 74mpbid 231 . . . . . . . . . . . . . 14 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵))
76 uncom 4118 . . . . . . . . . . . . . . . . 17 (𝐵𝐶) = (𝐶𝐵)
7776difeq1i 4083 . . . . . . . . . . . . . . . 16 ((𝐵𝐶) ∖ 𝐵) = ((𝐶𝐵) ∖ 𝐵)
78 difun2 4445 . . . . . . . . . . . . . . . 16 ((𝐶𝐵) ∖ 𝐵) = (𝐶𝐵)
7977, 78eqtri 2765 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐵) = (𝐶𝐵)
80 difss 4096 . . . . . . . . . . . . . . 15 (𝐶𝐵) ⊆ 𝐶
8179, 80eqsstri 3983 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐵) ⊆ 𝐶
8275, 81sstrdi 3961 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐶)
83 simp3r 1203 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
8472elin2d 4164 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
85 elfir 9358 . . . . . . . . . . . . 13 ((𝐶𝐾 ∧ (𝑧𝐶𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐶))
8670, 82, 83, 84, 85syl13anc 1373 . . . . . . . . . . . 12 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐶))
87863mix2d 1338 . . . . . . . . . . 11 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
88873expib 1123 . . . . . . . . . 10 ((𝑧𝐵) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
89 simp22 1208 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
90 simp1 1137 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) = ∅)
91 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
92 reldisj 4416 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9391, 53, 923syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9490, 93mpbid 231 . . . . . . . . . . . . . 14 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶))
95 difun2 4445 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐶) = (𝐵𝐶)
96 difss 4096 . . . . . . . . . . . . . . 15 (𝐵𝐶) ⊆ 𝐵
9795, 96eqsstri 3983 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐶) ⊆ 𝐵
9894, 97sstrdi 3961 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐵)
99 simp3r 1203 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
10091elin2d 4164 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
101 elfir 9358 . . . . . . . . . . . . 13 ((𝐵𝐷 ∧ (𝑧𝐵𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐵))
10289, 98, 99, 100, 101syl13anc 1373 . . . . . . . . . . . 12 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐵))
1031023mix1d 1337 . . . . . . . . . . 11 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
1041033expib 1123 . . . . . . . . . 10 ((𝑧𝐶) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
10569, 88, 104pm2.61iine 3036 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
106 eleq1 2826 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ↔ 𝑧 ∈ (fi‘𝐵)))
107 eleq1 2826 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐶) ↔ 𝑧 ∈ (fi‘𝐶)))
108 eqeq1 2741 . . . . . . . . . . 11 (𝐴 = 𝑧 → (𝐴 = (𝑥𝑦) ↔ 𝑧 = (𝑥𝑦)))
1091082rexbidv 3214 . . . . . . . . . 10 (𝐴 = 𝑧 → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ↔ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
110106, 107, 1093orbi123d 1436 . . . . . . . . 9 (𝐴 = 𝑧 → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) ↔ ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
111105, 110syl5ibrcom 247 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
112111expr 458 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝑧 ≠ ∅ → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
113112com23 86 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝑧 ≠ ∅ → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
11431, 113mpdd 43 . . . . 5 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
115114rexlimdva 3153 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
11626, 115sylbid 239 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
117 ssun1 4137 . . . . . . 7 𝐵 ⊆ (𝐵𝐶)
118 fiss 9367 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐵 ⊆ (𝐵𝐶)) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
11923, 117, 118sylancl 587 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
1201193adant1 1131 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
121120sseld 3948 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ (fi‘(𝐵𝐶))))
122 ssun2 4138 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
123 fiss 9367 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐶 ⊆ (𝐵𝐶)) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
12423, 122, 123sylancl 587 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
1251243adant1 1131 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
126125sseld 3948 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ (fi‘(𝐵𝐶))))
127120sseld 3948 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑥 ∈ (fi‘𝐵) → 𝑥 ∈ (fi‘(𝐵𝐶))))
128125sseld 3948 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑦 ∈ (fi‘𝐶) → 𝑦 ∈ (fi‘(𝐵𝐶))))
129127, 128anim12d 610 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶)))))
130 fiin 9365 . . . . . . 7 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝑥𝑦) ∈ (fi‘(𝐵𝐶)))
131 eleq1a 2833 . . . . . . 7 ((𝑥𝑦) ∈ (fi‘(𝐵𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
132130, 131syl 17 . . . . . 6 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
133129, 132syl6 35 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶)))))
134133rexlimdvv 3205 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
135121, 126, 1343jaod 1429 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → 𝐴 ∈ (fi‘(𝐵𝐶))))
136116, 135impbid 211 . 2 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
1375, 21, 136pm5.21nd 801 1 ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2944  wrex 3074  Vcvv 3448  cdif 3912  cun 3913  cin 3914  wss 3915  c0 4287  𝒫 cpw 4565   cint 4912  cfv 6501  Fincfn 8890  ficfi 9353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-er 8655  df-en 8891  df-fin 8894  df-fi 9354
This theorem is referenced by:  ordtbas2  22558  ordtbas  22559  fbunfip  23236  fmfnfmlem4  23324
  Copyright terms: Public domain W3C validator