Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiel2 Structured version   Visualization version   GIF version

Theorem ntrneiel2 40789
Description: Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrneiel2.x (𝜑𝑋𝐵)
ntrneiel2.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneiel2 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑦   𝑢,𝐵,𝑦   𝑘,𝐼,𝑙,𝑚,𝑦   𝑢,𝑁,𝑦   𝑆,𝑚,𝑦   𝑢,𝑆   𝑋,𝑙,𝑚,𝑦   𝑢,𝑋   𝜑,𝑖,𝑗,𝑘,𝑙,𝑦   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑢,𝑖,𝑗)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneiel2
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . 3 (𝜑𝐼𝐹𝑁)
4 ntrneiel2.x . . 3 (𝜑𝑋𝐵)
51, 2, 3ntrneiiex 40779 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 elmapi 8411 . . . . 5 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
75, 6syl 17 . . . 4 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
8 ntrneiel2.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
97, 8ffvelrnd 6829 . . 3 (𝜑 → (𝐼𝑆) ∈ 𝒫 𝐵)
101, 2, 3, 4, 9ntrneiel 40784 . 2 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ (𝐼𝑆) ∈ (𝑁𝑋)))
111, 2, 3, 8ntrneifv4 40788 . . . 4 (𝜑 → (𝐼𝑆) = {𝑦𝐵𝑆 ∈ (𝑁𝑦)})
12 df-rab 3115 . . . 4 {𝑦𝐵𝑆 ∈ (𝑁𝑦)} = {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))}
1311, 12eqtrdi 2849 . . 3 (𝜑 → (𝐼𝑆) = {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))})
1413eleq1d 2874 . 2 (𝜑 → ((𝐼𝑆) ∈ (𝑁𝑋) ↔ {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋)))
15 clabel 2934 . . . 4 ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢(𝑢 ∈ (𝑁𝑋) ∧ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
16 df-rex 3112 . . . 4 (∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∃𝑢(𝑢 ∈ (𝑁𝑋) ∧ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
1715, 16bitr4i 281 . . 3 ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
18 ibar 532 . . . . . . . 8 (𝑦𝐵 → (𝑆 ∈ (𝑁𝑦) ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
1918bibi2d 346 . . . . . . 7 (𝑦𝐵 → ((𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
2019ralbiia 3132 . . . . . 6 (∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ ∀𝑦𝐵 (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
21 ssv 3939 . . . . . . . 8 𝐵 ⊆ V
2221a1i 11 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝐵 ⊆ V)
23 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
24 eldif 3891 . . . . . . . . . 10 (𝑦 ∈ (V ∖ 𝐵) ↔ (𝑦 ∈ V ∧ ¬ 𝑦𝐵))
2523, 24mpbiran 708 . . . . . . . . 9 (𝑦 ∈ (V ∖ 𝐵) ↔ ¬ 𝑦𝐵)
261, 2, 3ntrneinex 40780 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
27 elmapi 8411 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
2928, 4ffvelrnd 6829 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
3029elpwid 4508 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
3130sselda 3915 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝑢 ∈ 𝒫 𝐵)
3231elpwid 4508 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝑢𝐵)
3332sseld 3914 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁𝑋)) → (𝑦𝑢𝑦𝐵))
3433con3dimp 412 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → ¬ 𝑦𝑢)
35 pm3.14 993 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∨ ¬ 𝑆 ∈ (𝑁𝑦)) → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3635orcs 872 . . . . . . . . . . . 12 𝑦𝐵 → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3736adantl 485 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3834, 372falsed 380 . . . . . . . . . 10 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
3938ex 416 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁𝑋)) → (¬ 𝑦𝐵 → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4025, 39syl5bi 245 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁𝑋)) → (𝑦 ∈ (V ∖ 𝐵) → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4140ralrimiv 3148 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁𝑋)) → ∀𝑦 ∈ (V ∖ 𝐵)(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
4222, 41raldifeq 4397 . . . . . 6 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦𝐵 (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4320, 42syl5bb 286 . . . . 5 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ ∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
44 ralv 3466 . . . . 5 (∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
4543, 44syl6rbb 291 . . . 4 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4645rexbidva 3255 . . 3 (𝜑 → (∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4717, 46syl5bb 286 . 2 (𝜑 → ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4810, 14, 473bitrd 308 1 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by:  ntrneik4  40804
  Copyright terms: Public domain W3C validator