Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiel2 Structured version   Visualization version   GIF version

Theorem ntrneiel2 41264
Description: Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrneiel2.x (𝜑𝑋𝐵)
ntrneiel2.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneiel2 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑦   𝑢,𝐵,𝑦   𝑘,𝐼,𝑙,𝑚,𝑦   𝑢,𝑁,𝑦   𝑆,𝑚,𝑦   𝑢,𝑆   𝑋,𝑙,𝑚,𝑦   𝑢,𝑋   𝜑,𝑖,𝑗,𝑘,𝑙,𝑦   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑢,𝑖,𝑗)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneiel2
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . 3 (𝜑𝐼𝐹𝑁)
4 ntrneiel2.x . . 3 (𝜑𝑋𝐵)
51, 2, 3ntrneiiex 41254 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 elmapi 8461 . . . . 5 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
75, 6syl 17 . . . 4 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
8 ntrneiel2.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
97, 8ffvelrnd 6864 . . 3 (𝜑 → (𝐼𝑆) ∈ 𝒫 𝐵)
101, 2, 3, 4, 9ntrneiel 41259 . 2 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ (𝐼𝑆) ∈ (𝑁𝑋)))
111, 2, 3, 8ntrneifv4 41263 . . . 4 (𝜑 → (𝐼𝑆) = {𝑦𝐵𝑆 ∈ (𝑁𝑦)})
12 df-rab 3062 . . . 4 {𝑦𝐵𝑆 ∈ (𝑁𝑦)} = {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))}
1311, 12eqtrdi 2789 . . 3 (𝜑 → (𝐼𝑆) = {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))})
1413eleq1d 2817 . 2 (𝜑 → ((𝐼𝑆) ∈ (𝑁𝑋) ↔ {𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋)))
15 clabel 2877 . . . 4 ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢(𝑢 ∈ (𝑁𝑋) ∧ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
16 df-rex 3059 . . . 4 (∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∃𝑢(𝑢 ∈ (𝑁𝑋) ∧ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
1715, 16bitr4i 281 . . 3 ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
18 ibar 532 . . . . . . . 8 (𝑦𝐵 → (𝑆 ∈ (𝑁𝑦) ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
1918bibi2d 346 . . . . . . 7 (𝑦𝐵 → ((𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
2019ralbiia 3079 . . . . . 6 (∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ ∀𝑦𝐵 (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
21 ssv 3901 . . . . . . . 8 𝐵 ⊆ V
2221a1i 11 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝐵 ⊆ V)
23 vex 3402 . . . . . . . . . 10 𝑦 ∈ V
24 eldif 3853 . . . . . . . . . 10 (𝑦 ∈ (V ∖ 𝐵) ↔ (𝑦 ∈ V ∧ ¬ 𝑦𝐵))
2523, 24mpbiran 709 . . . . . . . . 9 (𝑦 ∈ (V ∖ 𝐵) ↔ ¬ 𝑦𝐵)
261, 2, 3ntrneinex 41255 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
27 elmapi 8461 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
2928, 4ffvelrnd 6864 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
3029elpwid 4499 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
3130sselda 3877 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝑢 ∈ 𝒫 𝐵)
3231elpwid 4499 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁𝑋)) → 𝑢𝐵)
3332sseld 3876 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁𝑋)) → (𝑦𝑢𝑦𝐵))
3433con3dimp 412 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → ¬ 𝑦𝑢)
35 pm3.14 995 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∨ ¬ 𝑆 ∈ (𝑁𝑦)) → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3635orcs 874 . . . . . . . . . . . 12 𝑦𝐵 → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3736adantl 485 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → ¬ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))
3834, 372falsed 380 . . . . . . . . . 10 (((𝜑𝑢 ∈ (𝑁𝑋)) ∧ ¬ 𝑦𝐵) → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
3938ex 416 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁𝑋)) → (¬ 𝑦𝐵 → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4025, 39syl5bi 245 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁𝑋)) → (𝑦 ∈ (V ∖ 𝐵) → (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4140ralrimiv 3095 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁𝑋)) → ∀𝑦 ∈ (V ∖ 𝐵)(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
4222, 41raldifeq 4380 . . . . . 6 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦𝐵 (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
4320, 42syl5bb 286 . . . . 5 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦)) ↔ ∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦)))))
44 ralv 3422 . . . . 5 (∀𝑦 ∈ V (𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))))
4543, 44bitr2di 291 . . . 4 ((𝜑𝑢 ∈ (𝑁𝑋)) → (∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4645rexbidva 3206 . . 3 (𝜑 → (∃𝑢 ∈ (𝑁𝑋)∀𝑦(𝑦𝑢 ↔ (𝑦𝐵𝑆 ∈ (𝑁𝑦))) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4717, 46syl5bb 286 . 2 (𝜑 → ({𝑦 ∣ (𝑦𝐵𝑆 ∈ (𝑁𝑦))} ∈ (𝑁𝑋) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
4810, 14, 473bitrd 308 1 (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1540   = wceq 1542  wex 1786  wcel 2114  {cab 2716  wral 3053  wrex 3054  {crab 3057  Vcvv 3398  cdif 3840  wss 3843  𝒫 cpw 4488   class class class wbr 5030  cmpt 5110  wf 6335  cfv 6339  (class class class)co 7172  cmpo 7174  m cmap 8439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-1st 7716  df-2nd 7717  df-map 8441
This theorem is referenced by:  ntrneik4  41279
  Copyright terms: Public domain W3C validator