Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem2 Structured version   Visualization version   GIF version

Theorem finxpreclem2 34223
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxpreclem2 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩))
Distinct variable groups:   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥

Proof of Theorem finxpreclem2
StepHypRef Expression
1 nfv 1896 . . . . . 6 𝑥(𝑋 ∈ V ∧ ¬ 𝑋𝑈)
2 nfmpo2 7100 . . . . . . . 8 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3 nfcv 2951 . . . . . . . 8 𝑥⟨1o, 𝑋
42, 3nffv 6555 . . . . . . 7 𝑥((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩)
5 nfcv 2951 . . . . . . 7 𝑥
64, 5nfne 3089 . . . . . 6 𝑥((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅
71, 6nfim 1882 . . . . 5 𝑥((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
8 nfv 1896 . . . . . . 7 𝑛 𝑥 = 𝑋
9 nfv 1896 . . . . . . . 8 𝑛(𝑋 ∈ V ∧ ¬ 𝑋𝑈)
10 nfmpo1 7099 . . . . . . . . . 10 𝑛(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
11 nfcv 2951 . . . . . . . . . 10 𝑛⟨1o, 𝑋
1210, 11nffv 6555 . . . . . . . . 9 𝑛((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩)
13 nfcv 2951 . . . . . . . . 9 𝑛
1412, 13nfne 3089 . . . . . . . 8 𝑛((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅
159, 14nfim 1882 . . . . . . 7 𝑛((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
168, 15nfim 1882 . . . . . 6 𝑛(𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅))
17 1onn 8122 . . . . . . 7 1o ∈ ω
1817elexi 3459 . . . . . 6 1o ∈ V
19 df-ov 7026 . . . . . . . . . 10 (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩)
20 0ex 5109 . . . . . . . . . . . . . . . 16 ∅ ∈ V
21 opex 5255 . . . . . . . . . . . . . . . . 17 𝑛, (1st𝑥)⟩ ∈ V
22 opex 5255 . . . . . . . . . . . . . . . . 17 𝑛, 𝑥⟩ ∈ V
2321, 22ifex 4435 . . . . . . . . . . . . . . . 16 if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ∈ V
2420, 23ifex 4435 . . . . . . . . . . . . . . 15 if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
2524csbex 5113 . . . . . . . . . . . . . 14 𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
2625csbex 5113 . . . . . . . . . . . . 13 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
27 eqid 2797 . . . . . . . . . . . . . 14 (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
2827ovmpos 7161 . . . . . . . . . . . . 13 ((1o ∈ ω ∧ 𝑋 ∈ V ∧ 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V) → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
2917, 26, 28mp3an13 1444 . . . . . . . . . . . 12 (𝑋 ∈ V → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3029adantr 481 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋))) → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
31 csbeq1a 3830 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
32 csbeq1a 3830 . . . . . . . . . . . . . . 15 (𝑛 = 1o𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3331, 32sylan9eqr 2855 . . . . . . . . . . . . . 14 ((𝑛 = 1o𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3433adantl 482 . . . . . . . . . . . . 13 ((¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
35 eleq1 2872 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
3635notbid 319 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (¬ 𝑥𝑈 ↔ ¬ 𝑋𝑈))
3736biimprcd 251 . . . . . . . . . . . . . . . . . 18 𝑋𝑈 → (𝑥 = 𝑋 → ¬ 𝑥𝑈))
38 pm3.14 990 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑛 = 1o ∨ ¬ 𝑥𝑈) → ¬ (𝑛 = 1o𝑥𝑈))
3938olcs 873 . . . . . . . . . . . . . . . . . 18 𝑥𝑈 → ¬ (𝑛 = 1o𝑥𝑈))
4037, 39syl6 35 . . . . . . . . . . . . . . . . 17 𝑋𝑈 → (𝑥 = 𝑋 → ¬ (𝑛 = 1o𝑥𝑈)))
41 iffalse 4396 . . . . . . . . . . . . . . . . 17 (¬ (𝑛 = 1o𝑥𝑈) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
4240, 41syl6 35 . . . . . . . . . . . . . . . 16 𝑋𝑈 → (𝑥 = 𝑋 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
4342imp 407 . . . . . . . . . . . . . . 15 ((¬ 𝑋𝑈𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
44 ifeqor 4436 . . . . . . . . . . . . . . . . 17 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ ∨ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
45 vuniex 7331 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ V
46 fvex 6558 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑥) ∈ V
4745, 46opnzi 5265 . . . . . . . . . . . . . . . . . . . 20 𝑛, (1st𝑥)⟩ ≠ ∅
4847neii 2988 . . . . . . . . . . . . . . . . . . 19 ¬ ⟨ 𝑛, (1st𝑥)⟩ = ∅
49 eqeq1 2801 . . . . . . . . . . . . . . . . . . 19 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ → (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅ ↔ ⟨ 𝑛, (1st𝑥)⟩ = ∅))
5048, 49mtbiri 328 . . . . . . . . . . . . . . . . . 18 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
51 vex 3443 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ V
52 vex 3443 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
5351, 52opnzi 5265 . . . . . . . . . . . . . . . . . . . 20 𝑛, 𝑥⟩ ≠ ∅
5453neii 2988 . . . . . . . . . . . . . . . . . . 19 ¬ ⟨𝑛, 𝑥⟩ = ∅
55 eqeq1 2801 . . . . . . . . . . . . . . . . . . 19 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩ → (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅ ↔ ⟨𝑛, 𝑥⟩ = ∅))
5654, 55mtbiri 328 . . . . . . . . . . . . . . . . . 18 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩ → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5750, 56jaoi 852 . . . . . . . . . . . . . . . . 17 ((if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ ∨ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩) → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5844, 57mp1i 13 . . . . . . . . . . . . . . . 16 ((¬ 𝑋𝑈𝑥 = 𝑋) → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5958neqned 2993 . . . . . . . . . . . . . . 15 ((¬ 𝑋𝑈𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ≠ ∅)
6043, 59eqnetrd 3053 . . . . . . . . . . . . . 14 ((¬ 𝑋𝑈𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6160adantrl 712 . . . . . . . . . . . . 13 ((¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6234, 61eqnetrrd 3054 . . . . . . . . . . . 12 ((¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋)) → 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6362adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋))) → 1o / 𝑛𝑋 / 𝑥if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6430, 63eqnetrd 3053 . . . . . . . . . 10 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋))) → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) ≠ ∅)
6519, 64syl5eqner 3061 . . . . . . . . 9 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋))) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
6665ancom2s 646 . . . . . . . 8 ((𝑋 ∈ V ∧ ((𝑛 = 1o𝑥 = 𝑋) ∧ ¬ 𝑋𝑈)) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
6766an12s 645 . . . . . . 7 (((𝑛 = 1o𝑥 = 𝑋) ∧ (𝑋 ∈ V ∧ ¬ 𝑋𝑈)) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
6867exp31 420 . . . . . 6 (𝑛 = 1o → (𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)))
6916, 18, 68vtoclef 3528 . . . . 5 (𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅))
707, 69vtoclefex 34167 . . . 4 (𝑋 ∈ V → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅))
7170anabsi5 665 . . 3 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩) ≠ ∅)
7271necomd 3041 . 2 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩))
7372neneqd 2991 1 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842   = wceq 1525  wcel 2083  wne 2986  Vcvv 3440  csb 3817  c0 4217  ifcif 4387  cop 4484   cuni 4751   × cxp 5448  cfv 6232  (class class class)co 7023  cmpo 7025  ωcom 7443  1st c1st 7550  1oc1o 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1o 7960
This theorem is referenced by:  finxp1o  34225
  Copyright terms: Public domain W3C validator