Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrintab Structured version   Visualization version   GIF version

Theorem cotrintab 41222
Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.)
Hypothesis
Ref Expression
cotrintab.min (𝜑 → (𝑥𝑥) ⊆ 𝑥)
Assertion
Ref Expression
cotrintab ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}

Proof of Theorem cotrintab
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 6017 . 2 (( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑} ↔ ∀𝑢𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣))
2 pm3.43 474 . . . . . 6 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑 → (𝑢𝑥𝑤𝑤𝑥𝑣)))
3 cotrintab.min . . . . . . 7 (𝜑 → (𝑥𝑥) ⊆ 𝑥)
4 cotr 6017 . . . . . . . 8 ((𝑥𝑥) ⊆ 𝑥 ↔ ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
54biimpi 215 . . . . . . 7 ((𝑥𝑥) ⊆ 𝑥 → ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
6 2sp 2179 . . . . . . . 8 (∀𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
76sps 2178 . . . . . . 7 (∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
83, 5, 73syl 18 . . . . . 6 (𝜑 → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
92, 8sylcom 30 . . . . 5 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑𝑢𝑥𝑣))
109alanimi 1819 . . . 4 ((∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)) → ∀𝑥(𝜑𝑢𝑥𝑣))
11 opex 5379 . . . . . . 7 𝑢, 𝑤⟩ ∈ V
1211elintab 4890 . . . . . 6 (⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
13 df-br 5075 . . . . . 6 (𝑢 {𝑥𝜑}𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑})
14 df-br 5075 . . . . . . . 8 (𝑢𝑥𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ 𝑥)
1514imbi2i 336 . . . . . . 7 ((𝜑𝑢𝑥𝑤) ↔ (𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1615albii 1822 . . . . . 6 (∀𝑥(𝜑𝑢𝑥𝑤) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1712, 13, 163bitr4i 303 . . . . 5 (𝑢 {𝑥𝜑}𝑤 ↔ ∀𝑥(𝜑𝑢𝑥𝑤))
18 opex 5379 . . . . . . 7 𝑤, 𝑣⟩ ∈ V
1918elintab 4890 . . . . . 6 (⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
20 df-br 5075 . . . . . 6 (𝑤 {𝑥𝜑}𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑})
21 df-br 5075 . . . . . . . 8 (𝑤𝑥𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ 𝑥)
2221imbi2i 336 . . . . . . 7 ((𝜑𝑤𝑥𝑣) ↔ (𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2322albii 1822 . . . . . 6 (∀𝑥(𝜑𝑤𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2419, 20, 233bitr4i 303 . . . . 5 (𝑤 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑤𝑥𝑣))
2517, 24anbi12i 627 . . . 4 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) ↔ (∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)))
26 opex 5379 . . . . . 6 𝑢, 𝑣⟩ ∈ V
2726elintab 4890 . . . . 5 (⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
28 df-br 5075 . . . . 5 (𝑢 {𝑥𝜑}𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑})
29 df-br 5075 . . . . . . 7 (𝑢𝑥𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑥)
3029imbi2i 336 . . . . . 6 ((𝜑𝑢𝑥𝑣) ↔ (𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3130albii 1822 . . . . 5 (∀𝑥(𝜑𝑢𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3227, 28, 313bitr4i 303 . . . 4 (𝑢 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑢𝑥𝑣))
3310, 25, 323imtr4i 292 . . 3 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
3433gen2 1799 . 2 𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
351, 34mpgbir 1802 1 ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  {cab 2715  wss 3887  cop 4567   cint 4879   class class class wbr 5074  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-int 4880  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-co 5598
This theorem is referenced by:  dfrtrcl5  41237
  Copyright terms: Public domain W3C validator