Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrintab Structured version   Visualization version   GIF version

Theorem cotrintab 43638
Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.)
Hypothesis
Ref Expression
cotrintab.min (𝜑 → (𝑥𝑥) ⊆ 𝑥)
Assertion
Ref Expression
cotrintab ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}

Proof of Theorem cotrintab
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 6099 . 2 (( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑} ↔ ∀𝑢𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣))
2 pm3.43 473 . . . . . 6 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑 → (𝑢𝑥𝑤𝑤𝑥𝑣)))
3 cotrintab.min . . . . . . 7 (𝜑 → (𝑥𝑥) ⊆ 𝑥)
4 cotr 6099 . . . . . . . 8 ((𝑥𝑥) ⊆ 𝑥 ↔ ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
54biimpi 216 . . . . . . 7 ((𝑥𝑥) ⊆ 𝑥 → ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
6 2sp 2186 . . . . . . . 8 (∀𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
76sps 2185 . . . . . . 7 (∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
83, 5, 73syl 18 . . . . . 6 (𝜑 → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
92, 8sylcom 30 . . . . 5 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑𝑢𝑥𝑣))
109alanimi 1816 . . . 4 ((∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)) → ∀𝑥(𝜑𝑢𝑥𝑣))
11 opex 5439 . . . . . . 7 𝑢, 𝑤⟩ ∈ V
1211elintab 4934 . . . . . 6 (⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
13 df-br 5120 . . . . . 6 (𝑢 {𝑥𝜑}𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑})
14 df-br 5120 . . . . . . . 8 (𝑢𝑥𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ 𝑥)
1514imbi2i 336 . . . . . . 7 ((𝜑𝑢𝑥𝑤) ↔ (𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1615albii 1819 . . . . . 6 (∀𝑥(𝜑𝑢𝑥𝑤) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1712, 13, 163bitr4i 303 . . . . 5 (𝑢 {𝑥𝜑}𝑤 ↔ ∀𝑥(𝜑𝑢𝑥𝑤))
18 opex 5439 . . . . . . 7 𝑤, 𝑣⟩ ∈ V
1918elintab 4934 . . . . . 6 (⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
20 df-br 5120 . . . . . 6 (𝑤 {𝑥𝜑}𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑})
21 df-br 5120 . . . . . . . 8 (𝑤𝑥𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ 𝑥)
2221imbi2i 336 . . . . . . 7 ((𝜑𝑤𝑥𝑣) ↔ (𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2322albii 1819 . . . . . 6 (∀𝑥(𝜑𝑤𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2419, 20, 233bitr4i 303 . . . . 5 (𝑤 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑤𝑥𝑣))
2517, 24anbi12i 628 . . . 4 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) ↔ (∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)))
26 opex 5439 . . . . . 6 𝑢, 𝑣⟩ ∈ V
2726elintab 4934 . . . . 5 (⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
28 df-br 5120 . . . . 5 (𝑢 {𝑥𝜑}𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑})
29 df-br 5120 . . . . . . 7 (𝑢𝑥𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑥)
3029imbi2i 336 . . . . . 6 ((𝜑𝑢𝑥𝑣) ↔ (𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3130albii 1819 . . . . 5 (∀𝑥(𝜑𝑢𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3227, 28, 313bitr4i 303 . . . 4 (𝑢 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑢𝑥𝑣))
3310, 25, 323imtr4i 292 . . 3 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
3433gen2 1796 . 2 𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
351, 34mpgbir 1799 1 ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2108  {cab 2713  wss 3926  cop 4607   cint 4922   class class class wbr 5119  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-int 4923  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-co 5663
This theorem is referenced by:  dfrtrcl5  43653
  Copyright terms: Public domain W3C validator