Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Visualization version   GIF version

Theorem jm2.16nn0 42980
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 42979 if Yrm is redefined as described in rmyluc 42913. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))

Proof of Theorem jm2.16nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12763 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 peano2zm 12536 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℤ)
4 0z 12500 . . . . 5 0 ∈ ℤ
5 congid 42947 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 − 1) ∥ (0 − 0))
63, 4, 5sylancl 586 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (0 − 0))
7 rmy0 42905 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
87oveq1d 7368 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 0) − 0) = (0 − 0))
96, 8breqtrrd 5123 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))
10 1z 12523 . . . . 5 1 ∈ ℤ
11 congid 42947 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∥ (1 − 1))
123, 10, 11sylancl 586 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (1 − 1))
13 rmy1 42906 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
1413oveq1d 7368 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 1) − 1) = (1 − 1))
1512, 14breqtrrd 5123 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))
16 pm3.43 473 . . . 4 (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
171adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
1817, 2syl 17 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∈ ℤ)
19 eluzel2 12758 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
2019adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 2 ∈ ℤ)
21 simpr 484 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
22 nnz 12510 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
2322adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
24 frmy 42890 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2524fovcl 7481 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2621, 23, 25syl2anc 584 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2726, 17zmulcld 12604 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
2820, 27zmulcld 12604 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
29 zmulcl 12542 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑏 · 1) ∈ ℤ)
3023, 10, 29sylancl 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 · 1) ∈ ℤ)
3120, 30zmulcld 12604 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · (𝑏 · 1)) ∈ ℤ)
3218, 28, 313jca 1128 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
33323adant3 1132 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
34 peano2zm 12536 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 − 1) ∈ ℤ)
3624fovcl 7481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3721, 35, 36syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3837, 35jca 511 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
39383adant3 1132 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
4018, 20, 203jca 1128 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
41403adant3 1132 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
4227, 30jca 511 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
43423adant3 1132 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
44 congid 42947 . . . . . . . . . . 11 (((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴 − 1) ∥ (2 − 2))
4518, 20, 44syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (2 − 2))
46453adant3 1132 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (2 − 2))
4718, 26, 233jca 1128 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
48473adant3 1132 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
4917, 10jctir 520 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
50493adant3 1132 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
51 simp3r 1203 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))
52 iddvds 16198 . . . . . . . . . . . 12 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∥ (𝐴 − 1))
5318, 52syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (𝐴 − 1))
54533adant3 1132 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (𝐴 − 1))
55 congmul 42943 . . . . . . . . . 10 ((((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏) ∧ (𝐴 − 1) ∥ (𝐴 − 1))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
5648, 50, 51, 54, 55syl112anc 1376 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
57 congmul 42943 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ (2 − 2) ∧ (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
5841, 43, 46, 56, 57syl112anc 1376 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
59 simp3l 1202 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
60 congsub 42946 . . . . . . . 8 ((((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
6133, 39, 58, 59, 60syl112anc 1376 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
62 rmyluc 42913 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6321, 23, 62syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
64 nncn 12154 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
6564mulridd 11151 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (𝑏 · 1) = 𝑏)
6665oveq2d 7369 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (2 · 𝑏))
67642timesd 12385 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · 𝑏) = (𝑏 + 𝑏))
6866, 67eqtrd 2764 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (𝑏 + 𝑏))
6968oveq1d 7368 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((2 · (𝑏 · 1)) − (𝑏 − 1)) = ((𝑏 + 𝑏) − (𝑏 − 1)))
70 1cnd 11129 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → 1 ∈ ℂ)
7164, 64, 70pnncand 11532 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((𝑏 + 𝑏) − (𝑏 − 1)) = (𝑏 + 1))
7269, 71eqtr2d 2765 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7372adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7463, 73oveq12d 7371 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
75743adant3 1132 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
7661, 75breqtrrd 5123 . . . . . 6 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
77763exp 1119 . . . . 5 (𝑏 ∈ ℕ → (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7877a2d 29 . . . 4 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7916, 78syl5 34 . . 3 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
80 oveq2 7361 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
81 id 22 . . . . . 6 (𝑎 = 0 → 𝑎 = 0)
8280, 81oveq12d 7371 . . . . 5 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 0) − 0))
8382breq2d 5107 . . . 4 (𝑎 = 0 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0)))
8483imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))))
85 oveq2 7361 . . . . . 6 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
86 id 22 . . . . . 6 (𝑎 = 1 → 𝑎 = 1)
8785, 86oveq12d 7371 . . . . 5 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 1) − 1))
8887breq2d 5107 . . . 4 (𝑎 = 1 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1)))
8988imbi2d 340 . . 3 (𝑎 = 1 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))))
90 oveq2 7361 . . . . . 6 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
91 id 22 . . . . . 6 (𝑎 = (𝑏 − 1) → 𝑎 = (𝑏 − 1))
9290, 91oveq12d 7371 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
9392breq2d 5107 . . . 4 (𝑎 = (𝑏 − 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))))
9493imbi2d 340 . . 3 (𝑎 = (𝑏 − 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))))
95 oveq2 7361 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
96 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
9795, 96oveq12d 7371 . . . . 5 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑏) − 𝑏))
9897breq2d 5107 . . . 4 (𝑎 = 𝑏 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)))
9998imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
100 oveq2 7361 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
101 id 22 . . . . . 6 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
102100, 101oveq12d 7371 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
103102breq2d 5107 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1))))
104103imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
105 oveq2 7361 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
106 id 22 . . . . . 6 (𝑎 = 𝑁𝑎 = 𝑁)
107105, 106oveq12d 7371 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑁) − 𝑁))
108107breq2d 5107 . . . 4 (𝑎 = 𝑁 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
109108imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))))
1109, 15, 79, 84, 89, 94, 99, 104, 1092nn0ind 42921 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
111110impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cdvds 16181   Yrm crmy 42877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-numer 16664  df-denom 16665  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-squarenn 42817  df-pell1qr 42818  df-pell14qr 42819  df-pell1234qr 42820  df-pellfund 42821  df-rmx 42878  df-rmy 42879
This theorem is referenced by:  jm2.27a  42981  jm2.27c  42983
  Copyright terms: Public domain W3C validator