Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Visualization version   GIF version

Theorem jm2.16nn0 40382
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 40381 if Yrm is redefined as described in rmyluc 40315. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))

Proof of Theorem jm2.16nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12327 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 peano2zm 12099 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℤ)
4 0z 12066 . . . . 5 0 ∈ ℤ
5 congid 40349 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 − 1) ∥ (0 − 0))
63, 4, 5sylancl 589 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (0 − 0))
7 rmy0 40307 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
87oveq1d 7179 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 0) − 0) = (0 − 0))
96, 8breqtrrd 5055 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))
10 1z 12086 . . . . 5 1 ∈ ℤ
11 congid 40349 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∥ (1 − 1))
123, 10, 11sylancl 589 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (1 − 1))
13 rmy1 40308 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
1413oveq1d 7179 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 1) − 1) = (1 − 1))
1512, 14breqtrrd 5055 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))
16 pm3.43 477 . . . 4 (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
171adantl 485 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
1817, 2syl 17 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∈ ℤ)
19 eluzel2 12322 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
2019adantl 485 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 2 ∈ ℤ)
21 simpr 488 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
22 nnz 12078 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
2322adantr 484 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
24 frmy 40292 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2524fovcl 7288 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2621, 23, 25syl2anc 587 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2726, 17zmulcld 12167 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
2820, 27zmulcld 12167 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
29 zmulcl 12105 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑏 · 1) ∈ ℤ)
3023, 10, 29sylancl 589 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 · 1) ∈ ℤ)
3120, 30zmulcld 12167 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · (𝑏 · 1)) ∈ ℤ)
3218, 28, 313jca 1129 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
33323adant3 1133 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
34 peano2zm 12099 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 − 1) ∈ ℤ)
3624fovcl 7288 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3721, 35, 36syl2anc 587 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3837, 35jca 515 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
39383adant3 1133 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
4018, 20, 203jca 1129 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
41403adant3 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
4227, 30jca 515 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
43423adant3 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
44 congid 40349 . . . . . . . . . . 11 (((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴 − 1) ∥ (2 − 2))
4518, 20, 44syl2anc 587 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (2 − 2))
46453adant3 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (2 − 2))
4718, 26, 233jca 1129 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
48473adant3 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
4917, 10jctir 524 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
50493adant3 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
51 simp3r 1203 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))
52 iddvds 15708 . . . . . . . . . . . 12 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∥ (𝐴 − 1))
5318, 52syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (𝐴 − 1))
54533adant3 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (𝐴 − 1))
55 congmul 40345 . . . . . . . . . 10 ((((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏) ∧ (𝐴 − 1) ∥ (𝐴 − 1))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
5648, 50, 51, 54, 55syl112anc 1375 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
57 congmul 40345 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ (2 − 2) ∧ (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
5841, 43, 46, 56, 57syl112anc 1375 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
59 simp3l 1202 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
60 congsub 40348 . . . . . . . 8 ((((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
6133, 39, 58, 59, 60syl112anc 1375 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
62 rmyluc 40315 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6321, 23, 62syl2anc 587 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
64 nncn 11717 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
6564mulid1d 10729 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (𝑏 · 1) = 𝑏)
6665oveq2d 7180 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (2 · 𝑏))
67642timesd 11952 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · 𝑏) = (𝑏 + 𝑏))
6866, 67eqtrd 2773 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (𝑏 + 𝑏))
6968oveq1d 7179 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((2 · (𝑏 · 1)) − (𝑏 − 1)) = ((𝑏 + 𝑏) − (𝑏 − 1)))
70 1cnd 10707 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → 1 ∈ ℂ)
7164, 64, 70pnncand 11107 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((𝑏 + 𝑏) − (𝑏 − 1)) = (𝑏 + 1))
7269, 71eqtr2d 2774 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7372adantr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7463, 73oveq12d 7182 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
75743adant3 1133 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
7661, 75breqtrrd 5055 . . . . . 6 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
77763exp 1120 . . . . 5 (𝑏 ∈ ℕ → (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7877a2d 29 . . . 4 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7916, 78syl5 34 . . 3 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
80 oveq2 7172 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
81 id 22 . . . . . 6 (𝑎 = 0 → 𝑎 = 0)
8280, 81oveq12d 7182 . . . . 5 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 0) − 0))
8382breq2d 5039 . . . 4 (𝑎 = 0 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0)))
8483imbi2d 344 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))))
85 oveq2 7172 . . . . . 6 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
86 id 22 . . . . . 6 (𝑎 = 1 → 𝑎 = 1)
8785, 86oveq12d 7182 . . . . 5 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 1) − 1))
8887breq2d 5039 . . . 4 (𝑎 = 1 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1)))
8988imbi2d 344 . . 3 (𝑎 = 1 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))))
90 oveq2 7172 . . . . . 6 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
91 id 22 . . . . . 6 (𝑎 = (𝑏 − 1) → 𝑎 = (𝑏 − 1))
9290, 91oveq12d 7182 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
9392breq2d 5039 . . . 4 (𝑎 = (𝑏 − 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))))
9493imbi2d 344 . . 3 (𝑎 = (𝑏 − 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))))
95 oveq2 7172 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
96 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
9795, 96oveq12d 7182 . . . . 5 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑏) − 𝑏))
9897breq2d 5039 . . . 4 (𝑎 = 𝑏 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)))
9998imbi2d 344 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
100 oveq2 7172 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
101 id 22 . . . . . 6 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
102100, 101oveq12d 7182 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
103102breq2d 5039 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1))))
104103imbi2d 344 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
105 oveq2 7172 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
106 id 22 . . . . . 6 (𝑎 = 𝑁𝑎 = 𝑁)
107105, 106oveq12d 7182 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑁) − 𝑁))
108107breq2d 5039 . . . 4 (𝑎 = 𝑁 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
109108imbi2d 344 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))))
1109, 15, 79, 84, 89, 94, 99, 104, 1092nn0ind 40323 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
111110impcom 411 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113   class class class wbr 5027  cfv 6333  (class class class)co 7164  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  cmin 10941  cn 11709  2c2 11764  0cn0 11969  cz 12055  cuz 12317  cdvds 15692   Yrm crmy 40279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-omul 8129  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-acn 9437  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-xnn0 12042  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ioo 12818  df-ioc 12819  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-fac 13719  df-bc 13748  df-hash 13776  df-shft 14509  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-limsup 14911  df-clim 14928  df-rlim 14929  df-sum 15129  df-ef 15506  df-sin 15508  df-cos 15509  df-pi 15511  df-dvds 15693  df-gcd 15931  df-numer 16168  df-denom 16169  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-fbas 20207  df-fg 20208  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cld 21763  df-ntr 21764  df-cls 21765  df-nei 21842  df-lp 21880  df-perf 21881  df-cn 21971  df-cnp 21972  df-haus 22059  df-tx 22306  df-hmeo 22499  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-limc 24610  df-dv 24611  df-log 25292  df-squarenn 40219  df-pell1qr 40220  df-pell14qr 40221  df-pell1234qr 40222  df-pellfund 40223  df-rmx 40280  df-rmy 40281
This theorem is referenced by:  jm2.27a  40383  jm2.27c  40385
  Copyright terms: Public domain W3C validator