Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Visualization version   GIF version

Theorem jm2.16nn0 40742
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 40741 if Yrm is redefined as described in rmyluc 40675. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))

Proof of Theorem jm2.16nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12521 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 peano2zm 12293 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℤ)
4 0z 12260 . . . . 5 0 ∈ ℤ
5 congid 40709 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 − 1) ∥ (0 − 0))
63, 4, 5sylancl 585 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (0 − 0))
7 rmy0 40667 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
87oveq1d 7270 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 0) − 0) = (0 − 0))
96, 8breqtrrd 5098 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))
10 1z 12280 . . . . 5 1 ∈ ℤ
11 congid 40709 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∥ (1 − 1))
123, 10, 11sylancl 585 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (1 − 1))
13 rmy1 40668 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
1413oveq1d 7270 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 1) − 1) = (1 − 1))
1512, 14breqtrrd 5098 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))
16 pm3.43 473 . . . 4 (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
171adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
1817, 2syl 17 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∈ ℤ)
19 eluzel2 12516 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
2019adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 2 ∈ ℤ)
21 simpr 484 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
22 nnz 12272 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
2322adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
24 frmy 40652 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2524fovcl 7380 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2621, 23, 25syl2anc 583 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2726, 17zmulcld 12361 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
2820, 27zmulcld 12361 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
29 zmulcl 12299 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑏 · 1) ∈ ℤ)
3023, 10, 29sylancl 585 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 · 1) ∈ ℤ)
3120, 30zmulcld 12361 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · (𝑏 · 1)) ∈ ℤ)
3218, 28, 313jca 1126 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
33323adant3 1130 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
34 peano2zm 12293 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 − 1) ∈ ℤ)
3624fovcl 7380 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3721, 35, 36syl2anc 583 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3837, 35jca 511 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
39383adant3 1130 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
4018, 20, 203jca 1126 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
41403adant3 1130 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
4227, 30jca 511 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
43423adant3 1130 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
44 congid 40709 . . . . . . . . . . 11 (((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴 − 1) ∥ (2 − 2))
4518, 20, 44syl2anc 583 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (2 − 2))
46453adant3 1130 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (2 − 2))
4718, 26, 233jca 1126 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
48473adant3 1130 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
4917, 10jctir 520 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
50493adant3 1130 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
51 simp3r 1200 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))
52 iddvds 15907 . . . . . . . . . . . 12 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∥ (𝐴 − 1))
5318, 52syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (𝐴 − 1))
54533adant3 1130 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (𝐴 − 1))
55 congmul 40705 . . . . . . . . . 10 ((((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏) ∧ (𝐴 − 1) ∥ (𝐴 − 1))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
5648, 50, 51, 54, 55syl112anc 1372 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
57 congmul 40705 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ (2 − 2) ∧ (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
5841, 43, 46, 56, 57syl112anc 1372 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
59 simp3l 1199 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
60 congsub 40708 . . . . . . . 8 ((((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
6133, 39, 58, 59, 60syl112anc 1372 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
62 rmyluc 40675 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6321, 23, 62syl2anc 583 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
64 nncn 11911 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
6564mulid1d 10923 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (𝑏 · 1) = 𝑏)
6665oveq2d 7271 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (2 · 𝑏))
67642timesd 12146 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · 𝑏) = (𝑏 + 𝑏))
6866, 67eqtrd 2778 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (𝑏 + 𝑏))
6968oveq1d 7270 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((2 · (𝑏 · 1)) − (𝑏 − 1)) = ((𝑏 + 𝑏) − (𝑏 − 1)))
70 1cnd 10901 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → 1 ∈ ℂ)
7164, 64, 70pnncand 11301 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((𝑏 + 𝑏) − (𝑏 − 1)) = (𝑏 + 1))
7269, 71eqtr2d 2779 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7372adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7463, 73oveq12d 7273 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
75743adant3 1130 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
7661, 75breqtrrd 5098 . . . . . 6 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
77763exp 1117 . . . . 5 (𝑏 ∈ ℕ → (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7877a2d 29 . . . 4 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7916, 78syl5 34 . . 3 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
80 oveq2 7263 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
81 id 22 . . . . . 6 (𝑎 = 0 → 𝑎 = 0)
8280, 81oveq12d 7273 . . . . 5 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 0) − 0))
8382breq2d 5082 . . . 4 (𝑎 = 0 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0)))
8483imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))))
85 oveq2 7263 . . . . . 6 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
86 id 22 . . . . . 6 (𝑎 = 1 → 𝑎 = 1)
8785, 86oveq12d 7273 . . . . 5 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 1) − 1))
8887breq2d 5082 . . . 4 (𝑎 = 1 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1)))
8988imbi2d 340 . . 3 (𝑎 = 1 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))))
90 oveq2 7263 . . . . . 6 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
91 id 22 . . . . . 6 (𝑎 = (𝑏 − 1) → 𝑎 = (𝑏 − 1))
9290, 91oveq12d 7273 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
9392breq2d 5082 . . . 4 (𝑎 = (𝑏 − 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))))
9493imbi2d 340 . . 3 (𝑎 = (𝑏 − 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))))
95 oveq2 7263 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
96 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
9795, 96oveq12d 7273 . . . . 5 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑏) − 𝑏))
9897breq2d 5082 . . . 4 (𝑎 = 𝑏 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)))
9998imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
100 oveq2 7263 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
101 id 22 . . . . . 6 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
102100, 101oveq12d 7273 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
103102breq2d 5082 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1))))
104103imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
105 oveq2 7263 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
106 id 22 . . . . . 6 (𝑎 = 𝑁𝑎 = 𝑁)
107105, 106oveq12d 7273 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑁) − 𝑁))
108107breq2d 5082 . . . 4 (𝑎 = 𝑁 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
109108imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))))
1109, 15, 79, 84, 89, 94, 99, 104, 1092nn0ind 40683 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
111110impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cdvds 15891   Yrm crmy 40639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-squarenn 40579  df-pell1qr 40580  df-pell14qr 40581  df-pell1234qr 40582  df-pellfund 40583  df-rmx 40640  df-rmy 40641
This theorem is referenced by:  jm2.27a  40743  jm2.27c  40745
  Copyright terms: Public domain W3C validator