Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.18 Structured version   Visualization version   GIF version

Theorem jm2.18 42981
Description: Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))

Proof of Theorem jm2.18
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12526 . . . . . . . . . 10 2 ∈ ℤ
2 eluzelz 12764 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4 zmulcl 12543 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℤ)
6 nn0z 12515 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
76adantl 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
85, 7zmulcld 12605 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℤ)
9 zsqcl 14055 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾↑2) ∈ ℤ)
107, 9syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℤ)
118, 10zsubcld 12604 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ)
12 peano2zm 12537 . . . . . . 7 ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
14 dvds0 16201 . . . . . 6 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
1513, 14syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
16 rmx0 42918 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
1716adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 0) = 1)
18 rmy0 42922 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1918adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 0) = 0)
2019oveq2d 7369 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = ((𝐴𝐾) · 0))
213, 7zsubcld 12604 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
2221zcnd 12600 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2322mul01d 11334 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 0) = 0)
2420, 23eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = 0)
2517, 24oveq12d 7371 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = (1 − 0))
26 1m0e1 12263 . . . . . . . 8 (1 − 0) = 1
2725, 26eqtrdi 2780 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = 1)
28 nn0cn 12413 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2928adantl 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
3029exp0d 14066 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑0) = 1)
3127, 30oveq12d 7371 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = (1 − 1))
32 1m1e0 12219 . . . . . 6 (1 − 1) = 0
3331, 32eqtrdi 2780 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = 0)
3415, 33breqtrrd 5123 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
35 rmx1 42919 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
3635adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 1) = 𝐴)
37 rmy1 42923 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3837adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 1) = 1)
3938oveq2d 7369 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = ((𝐴𝐾) · 1))
4022mulridd 11151 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 1) = (𝐴𝐾))
4139, 40eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = (𝐴𝐾))
4236, 41oveq12d 7371 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = (𝐴 − (𝐴𝐾)))
433zcnd 12600 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443, 29nncand 11499 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 − (𝐴𝐾)) = 𝐾)
4542, 44eqtrd 2764 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = 𝐾)
4629exp1d 14067 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑1) = 𝐾)
4745, 46oveq12d 7371 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = (𝐾𝐾))
4829subidd 11482 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾𝐾) = 0)
4947, 48eqtrd 2764 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = 0)
5015, 49breqtrrd 5123 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
51 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
5213adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
535adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℤ)
54 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
55 nnz 12511 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
5655adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℤ)
57 frmx 42906 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
5857fovcl 7481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
5954, 56, 58syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
6059nn0zd 12516 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℤ)
6121adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℤ)
62 frmy 42907 . . . . . . . . . . . . . . . . . 18 Yrm :((ℤ‘2) × ℤ)⟶ℤ
6362fovcl 7481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6454, 56, 63syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6561, 64zmulcld 12605 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℤ)
6660, 65zsubcld 12604 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ)
6753, 66zmulcld 12605 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ)
68 peano2zm 12537 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
6956, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℤ)
7057fovcl 7481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7154, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7271nn0zd 12516 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℤ)
7362fovcl 7481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7454, 69, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7561, 74zmulcld 12605 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℤ)
7672, 75zsubcld 12604 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ)
7767, 76zsubcld 12604 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ)
7852, 77jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
7978adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
807adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℤ)
81 nnnn0 12410 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8281adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ0)
83 zexpcl 14002 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑏 ∈ ℕ0) → (𝐾𝑏) ∈ ℤ)
8480, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) ∈ ℤ)
8553, 84zmulcld 12605 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ)
86 nnm1nn0 12444 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℕ0)
8786adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℕ0)
88 zexpcl 14002 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑏 − 1) ∈ ℕ0) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
8980, 87, 88syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
9085, 89zsubcld 12604 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ)
91 0z 12501 . . . . . . . . . . . . . . 15 0 ∈ ℤ
92 zaddcl 12534 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → (0 + (𝐾↑2)) ∈ ℤ)
9391, 10, 92sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) ∈ ℤ)
9493adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (0 + (𝐾↑2)) ∈ ℤ)
9589, 94zmulcld 12605 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ)
9690, 95jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9796adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9852, 67, 853jca 1128 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
9998adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
10076, 89jca 511 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
101100adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
10213, 5, 53jca 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
103102ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
10466, 84jca 511 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
105104adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
106 congid 42964 . . . . . . . . . . . . . . 15 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
10713, 5, 106syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
108107ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
109 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
110 congmul 42960 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
111103, 105, 108, 109, 110syl112anc 1376 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
112111adantrl 716 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
113 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
114 congsub 42963 . . . . . . . . . . 11 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ) ∧ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11599, 101, 112, 113, 114syl112anc 1376 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11613, 10zaddcld 12603 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
117116adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
118 congid 42964 . . . . . . . . . . . . . 14 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
11952, 89, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
120 0zd 12502 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
121 iddvds 16199 . . . . . . . . . . . . . . . . 17 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12213, 121syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12313zcnd 12600 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℂ)
124123subid1d 11483 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) = ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
125122, 124breqtrrd 5123 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0))
126 congid 42964 . . . . . . . . . . . . . . . 16 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
12713, 10, 126syl2anc 584 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
128 congadd 42959 . . . . . . . . . . . . . . 15 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ 0 ∈ ℤ) ∧ ((𝐾↑2) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
12913, 13, 120, 10, 10, 125, 127, 128syl322anc 1400 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
130129adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
131 congmul 42960 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ ∧ (0 + (𝐾↑2)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13252, 89, 89, 117, 94, 119, 130, 131syl322anc 1400 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13311zcnd 12600 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℂ)
13429sqcld 14070 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℂ)
135 1cnd 11129 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℂ)
136133, 134, 135addsubd 11515 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)))
1378zcnd 12600 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
138137, 134npcand 11498 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) = ((2 · 𝐴) · 𝐾))
139138oveq1d 7368 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((2 · 𝐴) · 𝐾) − 1))
140136, 139eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
141140adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
142141oveq2d 7369 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) = ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)))
14328ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℂ)
144143, 87expcld 14072 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℂ)
145137adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
146 1cnd 11129 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 1 ∈ ℂ)
147144, 145, 146subdid 11595 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)) = (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)))
1485zcnd 12600 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℂ)
149148adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
150144, 149, 143mul12d 11344 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
152 expm1t 14016 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
153143, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
154153oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
155150, 154eqtr4d 2767 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · (𝐾𝑏)))
156144mulridd 11151 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · 1) = (𝐾↑(𝑏 − 1)))
157155, 156oveq12d 7371 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)) = (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))))
158142, 147, 1573eqtrrd 2769 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) = ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))))
159158oveq1d 7368 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))) = (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
160132, 159breqtrrd 5123 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
161160adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
162 congtr 42958 . . . . . . . . . 10 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ) ∧ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
16379, 97, 115, 161, 162syl112anc 1376 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
164 rmxluc 42929 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
16554, 56, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
166 rmyluc 42930 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
16754, 56, 166syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
168167oveq2d 7369 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))))
1692zcnd 12600 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
170169ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ ℂ)
171170, 143subcld 11494 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℂ)
172 2cn 12222 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
17363zcnd 12600 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℂ)
17454, 56, 173syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℂ)
175174, 170mulcld 11154 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ)
176 mulcl 11112 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
177172, 175, 176sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
17873zcnd 12600 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
17954, 69, 178syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
180171, 177, 179subdid 11595 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))) = (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
181 2cnd 12225 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 2 ∈ ℂ)
182181, 174, 170mul12d 11344 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((𝐴 Yrm 𝑏) · (2 · 𝐴)))
183174, 149mulcomd 11155 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
184182, 183eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
185184oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))))
186171, 149, 174mul12d 11344 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
187185, 186eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
188187oveq1d 7368 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
189168, 180, 1883eqtrd 2768 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
190165, 189oveq12d 7371 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
19158nn0cnd 12466 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℂ)
19254, 56, 191syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℂ)
193149, 192mulcld 11154 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Xrm 𝑏)) ∈ ℂ)
19470nn0cnd 12466 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
19554, 69, 194syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
196171, 174mulcld 11154 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℂ)
197149, 196mulcld 11154 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℂ)
198171, 179mulcld 11154 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℂ)
199193, 195, 197, 198sub4d 11543 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
200149, 192, 196subdid 11595 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
201200eqcomd 2735 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
202201oveq1d 7368 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
203190, 199, 2023eqtrd 2768 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
204143, 82expp1d 14073 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾𝑏) · 𝐾))
205 nncn 12155 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
206205adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℂ)
207 ax-1cn 11086 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
208 npcan 11391 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 − 1) + 1) = 𝑏)
209206, 207, 208sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝑏 − 1) + 1) = 𝑏)
210209oveq2d 7369 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = (𝐾𝑏))
211143, 87expp1d 14073 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = ((𝐾↑(𝑏 − 1)) · 𝐾))
212210, 211eqtr3d 2766 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
213212oveq1d 7368 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾𝑏) · 𝐾) = (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾))
214144, 143, 143mulassd 11157 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)))
215134addlidd 11336 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) = (𝐾↑2))
21629sqvald 14069 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) = (𝐾 · 𝐾))
217215, 216eqtr2d 2765 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
218217adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
219218oveq2d 7369 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
220214, 219eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
221204, 213, 2203eqtrd 2768 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
222203, 221oveq12d 7371 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
223222adantr 480 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
224163, 223breqtrrd 5123 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
225224ex 412 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
226225expcom 413 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
227226a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
22851, 227syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
229 oveq2 7361 . . . . . . . 8 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
230 oveq2 7361 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
231230oveq2d 7369 . . . . . . . 8 (𝑎 = 0 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 0)))
232229, 231oveq12d 7371 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))))
233 oveq2 7361 . . . . . . 7 (𝑎 = 0 → (𝐾𝑎) = (𝐾↑0))
234232, 233oveq12d 7371 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
235234breq2d 5107 . . . . 5 (𝑎 = 0 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0))))
236235imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))))
237 oveq2 7361 . . . . . . . 8 (𝑎 = 1 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 1))
238 oveq2 7361 . . . . . . . . 9 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
239238oveq2d 7369 . . . . . . . 8 (𝑎 = 1 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 1)))
240237, 239oveq12d 7371 . . . . . . 7 (𝑎 = 1 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))))
241 oveq2 7361 . . . . . . 7 (𝑎 = 1 → (𝐾𝑎) = (𝐾↑1))
242240, 241oveq12d 7371 . . . . . 6 (𝑎 = 1 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
243242breq2d 5107 . . . . 5 (𝑎 = 1 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1))))
244243imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))))
245 oveq2 7361 . . . . . . . 8 (𝑎 = (𝑏 − 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 − 1)))
246 oveq2 7361 . . . . . . . . 9 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
247246oveq2d 7369 . . . . . . . 8 (𝑎 = (𝑏 − 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))
248245, 247oveq12d 7371 . . . . . . 7 (𝑎 = (𝑏 − 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
249 oveq2 7361 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐾𝑎) = (𝐾↑(𝑏 − 1)))
250248, 249oveq12d 7371 . . . . . 6 (𝑎 = (𝑏 − 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
251250breq2d 5107 . . . . 5 (𝑎 = (𝑏 − 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))))
252251imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))))
253 oveq2 7361 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
254 oveq2 7361 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
255254oveq2d 7369 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑏)))
256253, 255oveq12d 7371 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
257 oveq2 7361 . . . . . . 7 (𝑎 = 𝑏 → (𝐾𝑎) = (𝐾𝑏))
258256, 257oveq12d 7371 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
259258breq2d 5107 . . . . 5 (𝑎 = 𝑏 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))))
260259imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
261 oveq2 7361 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
262 oveq2 7361 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
263262oveq2d 7369 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))))
264261, 263oveq12d 7371 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))))
265 oveq2 7361 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐾𝑎) = (𝐾↑(𝑏 + 1)))
266264, 265oveq12d 7371 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
267266breq2d 5107 . . . . 5 (𝑎 = (𝑏 + 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
268267imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
269 oveq2 7361 . . . . . . . 8 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
270 oveq2 7361 . . . . . . . . 9 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
271270oveq2d 7369 . . . . . . . 8 (𝑎 = 𝑁 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑁)))
272269, 271oveq12d 7371 . . . . . . 7 (𝑎 = 𝑁 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))))
273 oveq2 7361 . . . . . . 7 (𝑎 = 𝑁 → (𝐾𝑎) = (𝐾𝑁))
274272, 273oveq12d 7371 . . . . . 6 (𝑎 = 𝑁 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
275274breq2d 5107 . . . . 5 (𝑎 = 𝑁 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
276275imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))))
27734, 50, 228, 236, 244, 252, 260, 268, 2762nn0ind 42938 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
278277impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
2792783impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11366  cn 12147  2c2 12202  0cn0 12403  cz 12490  cuz 12754  cexp 13987  cdvds 16182   Xrm crmx 42893   Yrm crmy 42894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-dvds 16183  df-gcd 16425  df-numer 16665  df-denom 16666  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-squarenn 42834  df-pell1qr 42835  df-pell14qr 42836  df-pell1234qr 42837  df-pellfund 42838  df-rmx 42895  df-rmy 42896
This theorem is referenced by:  jm3.1  43013
  Copyright terms: Public domain W3C validator