Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.18 Structured version   Visualization version   GIF version

Theorem jm2.18 43005
Description: Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))

Proof of Theorem jm2.18
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12651 . . . . . . . . . 10 2 ∈ ℤ
2 eluzelz 12889 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4 zmulcl 12668 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℤ)
6 nn0z 12640 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
76adantl 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
85, 7zmulcld 12730 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℤ)
9 zsqcl 14170 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾↑2) ∈ ℤ)
107, 9syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℤ)
118, 10zsubcld 12729 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ)
12 peano2zm 12662 . . . . . . 7 ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
14 dvds0 16310 . . . . . 6 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
1513, 14syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
16 rmx0 42942 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
1716adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 0) = 1)
18 rmy0 42946 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1918adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 0) = 0)
2019oveq2d 7448 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = ((𝐴𝐾) · 0))
213, 7zsubcld 12729 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
2221zcnd 12725 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2322mul01d 11461 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 0) = 0)
2420, 23eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = 0)
2517, 24oveq12d 7450 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = (1 − 0))
26 1m0e1 12388 . . . . . . . 8 (1 − 0) = 1
2725, 26eqtrdi 2792 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = 1)
28 nn0cn 12538 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2928adantl 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
3029exp0d 14181 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑0) = 1)
3127, 30oveq12d 7450 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = (1 − 1))
32 1m1e0 12339 . . . . . 6 (1 − 1) = 0
3331, 32eqtrdi 2792 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = 0)
3415, 33breqtrrd 5170 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
35 rmx1 42943 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
3635adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 1) = 𝐴)
37 rmy1 42947 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3837adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 1) = 1)
3938oveq2d 7448 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = ((𝐴𝐾) · 1))
4022mulridd 11279 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 1) = (𝐴𝐾))
4139, 40eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = (𝐴𝐾))
4236, 41oveq12d 7450 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = (𝐴 − (𝐴𝐾)))
433zcnd 12725 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443, 29nncand 11626 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 − (𝐴𝐾)) = 𝐾)
4542, 44eqtrd 2776 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = 𝐾)
4629exp1d 14182 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑1) = 𝐾)
4745, 46oveq12d 7450 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = (𝐾𝐾))
4829subidd 11609 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾𝐾) = 0)
4947, 48eqtrd 2776 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = 0)
5015, 49breqtrrd 5170 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
51 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
5213adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
535adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℤ)
54 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
55 nnz 12636 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
5655adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℤ)
57 frmx 42930 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
5857fovcl 7562 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
5954, 56, 58syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
6059nn0zd 12641 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℤ)
6121adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℤ)
62 frmy 42931 . . . . . . . . . . . . . . . . . 18 Yrm :((ℤ‘2) × ℤ)⟶ℤ
6362fovcl 7562 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6454, 56, 63syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6561, 64zmulcld 12730 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℤ)
6660, 65zsubcld 12729 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ)
6753, 66zmulcld 12730 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ)
68 peano2zm 12662 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
6956, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℤ)
7057fovcl 7562 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7154, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7271nn0zd 12641 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℤ)
7362fovcl 7562 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7454, 69, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7561, 74zmulcld 12730 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℤ)
7672, 75zsubcld 12729 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ)
7767, 76zsubcld 12729 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ)
7852, 77jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
7978adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
807adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℤ)
81 nnnn0 12535 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8281adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ0)
83 zexpcl 14118 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑏 ∈ ℕ0) → (𝐾𝑏) ∈ ℤ)
8480, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) ∈ ℤ)
8553, 84zmulcld 12730 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ)
86 nnm1nn0 12569 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℕ0)
8786adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℕ0)
88 zexpcl 14118 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑏 − 1) ∈ ℕ0) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
8980, 87, 88syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
9085, 89zsubcld 12729 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ)
91 0z 12626 . . . . . . . . . . . . . . 15 0 ∈ ℤ
92 zaddcl 12659 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → (0 + (𝐾↑2)) ∈ ℤ)
9391, 10, 92sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) ∈ ℤ)
9493adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (0 + (𝐾↑2)) ∈ ℤ)
9589, 94zmulcld 12730 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ)
9690, 95jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9796adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9852, 67, 853jca 1128 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
9998adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
10076, 89jca 511 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
101100adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
10213, 5, 53jca 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
103102ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
10466, 84jca 511 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
105104adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
106 congid 42988 . . . . . . . . . . . . . . 15 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
10713, 5, 106syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
108107ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
109 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
110 congmul 42984 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
111103, 105, 108, 109, 110syl112anc 1375 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
112111adantrl 716 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
113 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
114 congsub 42987 . . . . . . . . . . 11 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ) ∧ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11599, 101, 112, 113, 114syl112anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11613, 10zaddcld 12728 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
117116adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
118 congid 42988 . . . . . . . . . . . . . 14 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
11952, 89, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
120 0zd 12627 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
121 iddvds 16308 . . . . . . . . . . . . . . . . 17 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12213, 121syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12313zcnd 12725 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℂ)
124123subid1d 11610 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) = ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
125122, 124breqtrrd 5170 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0))
126 congid 42988 . . . . . . . . . . . . . . . 16 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
12713, 10, 126syl2anc 584 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
128 congadd 42983 . . . . . . . . . . . . . . 15 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ 0 ∈ ℤ) ∧ ((𝐾↑2) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
12913, 13, 120, 10, 10, 125, 127, 128syl322anc 1399 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
130129adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
131 congmul 42984 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ ∧ (0 + (𝐾↑2)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13252, 89, 89, 117, 94, 119, 130, 131syl322anc 1399 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13311zcnd 12725 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℂ)
13429sqcld 14185 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℂ)
135 1cnd 11257 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℂ)
136133, 134, 135addsubd 11642 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)))
1378zcnd 12725 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
138137, 134npcand 11625 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) = ((2 · 𝐴) · 𝐾))
139138oveq1d 7447 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((2 · 𝐴) · 𝐾) − 1))
140136, 139eqtr3d 2778 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
141140adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
142141oveq2d 7448 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) = ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)))
14328ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℂ)
144143, 87expcld 14187 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℂ)
145137adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
146 1cnd 11257 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 1 ∈ ℂ)
147144, 145, 146subdid 11720 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)) = (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)))
1485zcnd 12725 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℂ)
149148adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
150144, 149, 143mul12d 11471 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
152 expm1t 14132 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
153143, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
154153oveq2d 7448 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
155150, 154eqtr4d 2779 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · (𝐾𝑏)))
156144mulridd 11279 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · 1) = (𝐾↑(𝑏 − 1)))
157155, 156oveq12d 7450 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)) = (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))))
158142, 147, 1573eqtrrd 2781 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) = ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))))
159158oveq1d 7447 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))) = (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
160132, 159breqtrrd 5170 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
161160adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
162 congtr 42982 . . . . . . . . . 10 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ) ∧ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
16379, 97, 115, 161, 162syl112anc 1375 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
164 rmxluc 42953 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
16554, 56, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
166 rmyluc 42954 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
16754, 56, 166syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
168167oveq2d 7448 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))))
1692zcnd 12725 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
170169ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ ℂ)
171170, 143subcld 11621 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℂ)
172 2cn 12342 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
17363zcnd 12725 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℂ)
17454, 56, 173syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℂ)
175174, 170mulcld 11282 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ)
176 mulcl 11240 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
177172, 175, 176sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
17873zcnd 12725 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
17954, 69, 178syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
180171, 177, 179subdid 11720 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))) = (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
181 2cnd 12345 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 2 ∈ ℂ)
182181, 174, 170mul12d 11471 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((𝐴 Yrm 𝑏) · (2 · 𝐴)))
183174, 149mulcomd 11283 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
184182, 183eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
185184oveq2d 7448 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))))
186171, 149, 174mul12d 11471 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
187185, 186eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
188187oveq1d 7447 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
189168, 180, 1883eqtrd 2780 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
190165, 189oveq12d 7450 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
19158nn0cnd 12591 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℂ)
19254, 56, 191syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℂ)
193149, 192mulcld 11282 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Xrm 𝑏)) ∈ ℂ)
19470nn0cnd 12591 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
19554, 69, 194syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
196171, 174mulcld 11282 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℂ)
197149, 196mulcld 11282 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℂ)
198171, 179mulcld 11282 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℂ)
199193, 195, 197, 198sub4d 11670 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
200149, 192, 196subdid 11720 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
201200eqcomd 2742 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
202201oveq1d 7447 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
203190, 199, 2023eqtrd 2780 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
204143, 82expp1d 14188 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾𝑏) · 𝐾))
205 nncn 12275 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
206205adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℂ)
207 ax-1cn 11214 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
208 npcan 11518 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 − 1) + 1) = 𝑏)
209206, 207, 208sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝑏 − 1) + 1) = 𝑏)
210209oveq2d 7448 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = (𝐾𝑏))
211143, 87expp1d 14188 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = ((𝐾↑(𝑏 − 1)) · 𝐾))
212210, 211eqtr3d 2778 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
213212oveq1d 7447 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾𝑏) · 𝐾) = (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾))
214144, 143, 143mulassd 11285 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)))
215134addlidd 11463 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) = (𝐾↑2))
21629sqvald 14184 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) = (𝐾 · 𝐾))
217215, 216eqtr2d 2777 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
218217adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
219218oveq2d 7448 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
220214, 219eqtrd 2776 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
221204, 213, 2203eqtrd 2780 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
222203, 221oveq12d 7450 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
223222adantr 480 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
224163, 223breqtrrd 5170 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
225224ex 412 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
226225expcom 413 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
227226a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
22851, 227syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
229 oveq2 7440 . . . . . . . 8 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
230 oveq2 7440 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
231230oveq2d 7448 . . . . . . . 8 (𝑎 = 0 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 0)))
232229, 231oveq12d 7450 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))))
233 oveq2 7440 . . . . . . 7 (𝑎 = 0 → (𝐾𝑎) = (𝐾↑0))
234232, 233oveq12d 7450 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
235234breq2d 5154 . . . . 5 (𝑎 = 0 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0))))
236235imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))))
237 oveq2 7440 . . . . . . . 8 (𝑎 = 1 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 1))
238 oveq2 7440 . . . . . . . . 9 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
239238oveq2d 7448 . . . . . . . 8 (𝑎 = 1 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 1)))
240237, 239oveq12d 7450 . . . . . . 7 (𝑎 = 1 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))))
241 oveq2 7440 . . . . . . 7 (𝑎 = 1 → (𝐾𝑎) = (𝐾↑1))
242240, 241oveq12d 7450 . . . . . 6 (𝑎 = 1 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
243242breq2d 5154 . . . . 5 (𝑎 = 1 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1))))
244243imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))))
245 oveq2 7440 . . . . . . . 8 (𝑎 = (𝑏 − 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 − 1)))
246 oveq2 7440 . . . . . . . . 9 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
247246oveq2d 7448 . . . . . . . 8 (𝑎 = (𝑏 − 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))
248245, 247oveq12d 7450 . . . . . . 7 (𝑎 = (𝑏 − 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
249 oveq2 7440 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐾𝑎) = (𝐾↑(𝑏 − 1)))
250248, 249oveq12d 7450 . . . . . 6 (𝑎 = (𝑏 − 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
251250breq2d 5154 . . . . 5 (𝑎 = (𝑏 − 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))))
252251imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))))
253 oveq2 7440 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
254 oveq2 7440 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
255254oveq2d 7448 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑏)))
256253, 255oveq12d 7450 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
257 oveq2 7440 . . . . . . 7 (𝑎 = 𝑏 → (𝐾𝑎) = (𝐾𝑏))
258256, 257oveq12d 7450 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
259258breq2d 5154 . . . . 5 (𝑎 = 𝑏 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))))
260259imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
261 oveq2 7440 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
262 oveq2 7440 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
263262oveq2d 7448 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))))
264261, 263oveq12d 7450 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))))
265 oveq2 7440 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐾𝑎) = (𝐾↑(𝑏 + 1)))
266264, 265oveq12d 7450 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
267266breq2d 5154 . . . . 5 (𝑎 = (𝑏 + 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
268267imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
269 oveq2 7440 . . . . . . . 8 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
270 oveq2 7440 . . . . . . . . 9 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
271270oveq2d 7448 . . . . . . . 8 (𝑎 = 𝑁 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑁)))
272269, 271oveq12d 7450 . . . . . . 7 (𝑎 = 𝑁 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))))
273 oveq2 7440 . . . . . . 7 (𝑎 = 𝑁 → (𝐾𝑎) = (𝐾𝑁))
274272, 273oveq12d 7450 . . . . . 6 (𝑎 = 𝑁 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
275274breq2d 5154 . . . . 5 (𝑎 = 𝑁 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
276275imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))))
27734, 50, 228, 236, 244, 252, 260, 268, 2762nn0ind 42962 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
278277impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
2792783impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493  cn 12267  2c2 12322  0cn0 12528  cz 12615  cuz 12879  cexp 14103  cdvds 16291   Xrm crmx 42916   Yrm crmy 42917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-dvds 16292  df-gcd 16533  df-numer 16773  df-denom 16774  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599  df-squarenn 42857  df-pell1qr 42858  df-pell14qr 42859  df-pell1234qr 42860  df-pellfund 42861  df-rmx 42918  df-rmy 42919
This theorem is referenced by:  jm3.1  43037
  Copyright terms: Public domain W3C validator