Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.18 Structured version   Visualization version   GIF version

Theorem jm2.18 40726
Description: Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))

Proof of Theorem jm2.18
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12282 . . . . . . . . . 10 2 ∈ ℤ
2 eluzelz 12521 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4 zmulcl 12299 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 586 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℤ)
6 nn0z 12273 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
76adantl 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
85, 7zmulcld 12361 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℤ)
9 zsqcl 13776 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾↑2) ∈ ℤ)
107, 9syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℤ)
118, 10zsubcld 12360 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ)
12 peano2zm 12293 . . . . . . 7 ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
14 dvds0 15909 . . . . . 6 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
1513, 14syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
16 rmx0 40663 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
1716adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 0) = 1)
18 rmy0 40667 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1918adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 0) = 0)
2019oveq2d 7271 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = ((𝐴𝐾) · 0))
213, 7zsubcld 12360 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
2221zcnd 12356 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2322mul01d 11104 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 0) = 0)
2420, 23eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = 0)
2517, 24oveq12d 7273 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = (1 − 0))
26 1m0e1 12024 . . . . . . . 8 (1 − 0) = 1
2725, 26eqtrdi 2795 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = 1)
28 nn0cn 12173 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2928adantl 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
3029exp0d 13786 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑0) = 1)
3127, 30oveq12d 7273 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = (1 − 1))
32 1m1e0 11975 . . . . . 6 (1 − 1) = 0
3331, 32eqtrdi 2795 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = 0)
3415, 33breqtrrd 5098 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
35 rmx1 40664 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
3635adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 1) = 𝐴)
37 rmy1 40668 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3837adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 1) = 1)
3938oveq2d 7271 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = ((𝐴𝐾) · 1))
4022mulid1d 10923 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 1) = (𝐴𝐾))
4139, 40eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = (𝐴𝐾))
4236, 41oveq12d 7273 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = (𝐴 − (𝐴𝐾)))
433zcnd 12356 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443, 29nncand 11267 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 − (𝐴𝐾)) = 𝐾)
4542, 44eqtrd 2778 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = 𝐾)
4629exp1d 13787 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑1) = 𝐾)
4745, 46oveq12d 7273 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = (𝐾𝐾))
4829subidd 11250 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾𝐾) = 0)
4947, 48eqtrd 2778 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = 0)
5015, 49breqtrrd 5098 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
51 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
5213adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
535adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℤ)
54 simpll 763 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
55 nnz 12272 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
5655adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℤ)
57 frmx 40651 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
5857fovcl 7380 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
5954, 56, 58syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
6059nn0zd 12353 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℤ)
6121adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℤ)
62 frmy 40652 . . . . . . . . . . . . . . . . . 18 Yrm :((ℤ‘2) × ℤ)⟶ℤ
6362fovcl 7380 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6454, 56, 63syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6561, 64zmulcld 12361 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℤ)
6660, 65zsubcld 12360 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ)
6753, 66zmulcld 12361 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ)
68 peano2zm 12293 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
6956, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℤ)
7057fovcl 7380 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7154, 69, 70syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7271nn0zd 12353 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℤ)
7362fovcl 7380 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7454, 69, 73syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7561, 74zmulcld 12361 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℤ)
7672, 75zsubcld 12360 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ)
7767, 76zsubcld 12360 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ)
7852, 77jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
7978adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
807adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℤ)
81 nnnn0 12170 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8281adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ0)
83 zexpcl 13725 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑏 ∈ ℕ0) → (𝐾𝑏) ∈ ℤ)
8480, 82, 83syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) ∈ ℤ)
8553, 84zmulcld 12361 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ)
86 nnm1nn0 12204 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℕ0)
8786adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℕ0)
88 zexpcl 13725 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑏 − 1) ∈ ℕ0) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
8980, 87, 88syl2anc 583 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
9085, 89zsubcld 12360 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ)
91 0z 12260 . . . . . . . . . . . . . . 15 0 ∈ ℤ
92 zaddcl 12290 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → (0 + (𝐾↑2)) ∈ ℤ)
9391, 10, 92sylancr 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) ∈ ℤ)
9493adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (0 + (𝐾↑2)) ∈ ℤ)
9589, 94zmulcld 12361 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ)
9690, 95jca 511 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9796adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9852, 67, 853jca 1126 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
9998adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
10076, 89jca 511 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
101100adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
10213, 5, 53jca 1126 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
103102ad2antrr 722 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
10466, 84jca 511 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
105104adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
106 congid 40709 . . . . . . . . . . . . . . 15 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
10713, 5, 106syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
108107ad2antrr 722 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
109 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
110 congmul 40705 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
111103, 105, 108, 109, 110syl112anc 1372 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
112111adantrl 712 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
113 simprl 767 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
114 congsub 40708 . . . . . . . . . . 11 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ) ∧ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11599, 101, 112, 113, 114syl112anc 1372 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11613, 10zaddcld 12359 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
117116adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
118 congid 40709 . . . . . . . . . . . . . 14 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
11952, 89, 118syl2anc 583 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
120 0zd 12261 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
121 iddvds 15907 . . . . . . . . . . . . . . . . 17 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12213, 121syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12313zcnd 12356 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℂ)
124123subid1d 11251 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) = ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
125122, 124breqtrrd 5098 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0))
126 congid 40709 . . . . . . . . . . . . . . . 16 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
12713, 10, 126syl2anc 583 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
128 congadd 40704 . . . . . . . . . . . . . . 15 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ 0 ∈ ℤ) ∧ ((𝐾↑2) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
12913, 13, 120, 10, 10, 125, 127, 128syl322anc 1396 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
130129adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
131 congmul 40705 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ ∧ (0 + (𝐾↑2)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13252, 89, 89, 117, 94, 119, 130, 131syl322anc 1396 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13311zcnd 12356 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℂ)
13429sqcld 13790 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℂ)
135 1cnd 10901 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℂ)
136133, 134, 135addsubd 11283 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)))
1378zcnd 12356 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
138137, 134npcand 11266 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) = ((2 · 𝐴) · 𝐾))
139138oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((2 · 𝐴) · 𝐾) − 1))
140136, 139eqtr3d 2780 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
141140adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
142141oveq2d 7271 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) = ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)))
14328ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℂ)
144143, 87expcld 13792 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℂ)
145137adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
146 1cnd 10901 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 1 ∈ ℂ)
147144, 145, 146subdid 11361 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)) = (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)))
1485zcnd 12356 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℂ)
149148adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
150144, 149, 143mul12d 11114 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
152 expm1t 13739 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
153143, 151, 152syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
154153oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
155150, 154eqtr4d 2781 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · (𝐾𝑏)))
156144mulid1d 10923 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · 1) = (𝐾↑(𝑏 − 1)))
157155, 156oveq12d 7273 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)) = (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))))
158142, 147, 1573eqtrrd 2783 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) = ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))))
159158oveq1d 7270 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))) = (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
160132, 159breqtrrd 5098 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
161160adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
162 congtr 40703 . . . . . . . . . 10 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ) ∧ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
16379, 97, 115, 161, 162syl112anc 1372 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
164 rmxluc 40674 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
16554, 56, 164syl2anc 583 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
166 rmyluc 40675 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
16754, 56, 166syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
168167oveq2d 7271 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))))
1692zcnd 12356 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
170169ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ ℂ)
171170, 143subcld 11262 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℂ)
172 2cn 11978 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
17363zcnd 12356 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℂ)
17454, 56, 173syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℂ)
175174, 170mulcld 10926 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ)
176 mulcl 10886 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
177172, 175, 176sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
17873zcnd 12356 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
17954, 69, 178syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
180171, 177, 179subdid 11361 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))) = (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
181 2cnd 11981 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 2 ∈ ℂ)
182181, 174, 170mul12d 11114 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((𝐴 Yrm 𝑏) · (2 · 𝐴)))
183174, 149mulcomd 10927 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
184182, 183eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
185184oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))))
186171, 149, 174mul12d 11114 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
187185, 186eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
188187oveq1d 7270 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
189168, 180, 1883eqtrd 2782 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
190165, 189oveq12d 7273 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
19158nn0cnd 12225 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℂ)
19254, 56, 191syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℂ)
193149, 192mulcld 10926 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Xrm 𝑏)) ∈ ℂ)
19470nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
19554, 69, 194syl2anc 583 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
196171, 174mulcld 10926 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℂ)
197149, 196mulcld 10926 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℂ)
198171, 179mulcld 10926 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℂ)
199193, 195, 197, 198sub4d 11311 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
200149, 192, 196subdid 11361 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
201200eqcomd 2744 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
202201oveq1d 7270 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
203190, 199, 2023eqtrd 2782 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
204143, 82expp1d 13793 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾𝑏) · 𝐾))
205 nncn 11911 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
206205adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℂ)
207 ax-1cn 10860 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
208 npcan 11160 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 − 1) + 1) = 𝑏)
209206, 207, 208sylancl 585 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝑏 − 1) + 1) = 𝑏)
210209oveq2d 7271 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = (𝐾𝑏))
211143, 87expp1d 13793 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = ((𝐾↑(𝑏 − 1)) · 𝐾))
212210, 211eqtr3d 2780 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
213212oveq1d 7270 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾𝑏) · 𝐾) = (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾))
214144, 143, 143mulassd 10929 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)))
215134addid2d 11106 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) = (𝐾↑2))
21629sqvald 13789 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) = (𝐾 · 𝐾))
217215, 216eqtr2d 2779 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
218217adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
219218oveq2d 7271 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
220214, 219eqtrd 2778 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
221204, 213, 2203eqtrd 2782 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
222203, 221oveq12d 7273 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
223222adantr 480 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
224163, 223breqtrrd 5098 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
225224ex 412 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
226225expcom 413 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
227226a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
22851, 227syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
229 oveq2 7263 . . . . . . . 8 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
230 oveq2 7263 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
231230oveq2d 7271 . . . . . . . 8 (𝑎 = 0 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 0)))
232229, 231oveq12d 7273 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))))
233 oveq2 7263 . . . . . . 7 (𝑎 = 0 → (𝐾𝑎) = (𝐾↑0))
234232, 233oveq12d 7273 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
235234breq2d 5082 . . . . 5 (𝑎 = 0 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0))))
236235imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))))
237 oveq2 7263 . . . . . . . 8 (𝑎 = 1 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 1))
238 oveq2 7263 . . . . . . . . 9 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
239238oveq2d 7271 . . . . . . . 8 (𝑎 = 1 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 1)))
240237, 239oveq12d 7273 . . . . . . 7 (𝑎 = 1 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))))
241 oveq2 7263 . . . . . . 7 (𝑎 = 1 → (𝐾𝑎) = (𝐾↑1))
242240, 241oveq12d 7273 . . . . . 6 (𝑎 = 1 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
243242breq2d 5082 . . . . 5 (𝑎 = 1 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1))))
244243imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))))
245 oveq2 7263 . . . . . . . 8 (𝑎 = (𝑏 − 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 − 1)))
246 oveq2 7263 . . . . . . . . 9 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
247246oveq2d 7271 . . . . . . . 8 (𝑎 = (𝑏 − 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))
248245, 247oveq12d 7273 . . . . . . 7 (𝑎 = (𝑏 − 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
249 oveq2 7263 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐾𝑎) = (𝐾↑(𝑏 − 1)))
250248, 249oveq12d 7273 . . . . . 6 (𝑎 = (𝑏 − 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
251250breq2d 5082 . . . . 5 (𝑎 = (𝑏 − 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))))
252251imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))))
253 oveq2 7263 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
254 oveq2 7263 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
255254oveq2d 7271 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑏)))
256253, 255oveq12d 7273 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
257 oveq2 7263 . . . . . . 7 (𝑎 = 𝑏 → (𝐾𝑎) = (𝐾𝑏))
258256, 257oveq12d 7273 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
259258breq2d 5082 . . . . 5 (𝑎 = 𝑏 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))))
260259imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
261 oveq2 7263 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
262 oveq2 7263 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
263262oveq2d 7271 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))))
264261, 263oveq12d 7273 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))))
265 oveq2 7263 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐾𝑎) = (𝐾↑(𝑏 + 1)))
266264, 265oveq12d 7273 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
267266breq2d 5082 . . . . 5 (𝑎 = (𝑏 + 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
268267imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
269 oveq2 7263 . . . . . . . 8 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
270 oveq2 7263 . . . . . . . . 9 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
271270oveq2d 7271 . . . . . . . 8 (𝑎 = 𝑁 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑁)))
272269, 271oveq12d 7273 . . . . . . 7 (𝑎 = 𝑁 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))))
273 oveq2 7263 . . . . . . 7 (𝑎 = 𝑁 → (𝐾𝑎) = (𝐾𝑁))
274272, 273oveq12d 7273 . . . . . 6 (𝑎 = 𝑁 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
275274breq2d 5082 . . . . 5 (𝑎 = 𝑁 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
276275imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))))
27734, 50, 228, 236, 244, 252, 260, 268, 2762nn0ind 40683 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
278277impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
2792783impa 1108 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cexp 13710  cdvds 15891   Xrm crmx 40638   Yrm crmy 40639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-squarenn 40579  df-pell1qr 40580  df-pell14qr 40581  df-pell1234qr 40582  df-pellfund 40583  df-rmx 40640  df-rmy 40641
This theorem is referenced by:  jm3.1  40758
  Copyright terms: Public domain W3C validator