Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.18 Structured version   Visualization version   GIF version

Theorem jm2.18 40810
Description: Theorem 2.18 of [JonesMatijasevic] p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))

Proof of Theorem jm2.18
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12352 . . . . . . . . . 10 2 ∈ ℤ
2 eluzelz 12592 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
32adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4 zmulcl 12369 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℤ)
6 nn0z 12343 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
76adantl 482 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
85, 7zmulcld 12432 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℤ)
9 zsqcl 13848 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾↑2) ∈ ℤ)
107, 9syl 17 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℤ)
118, 10zsubcld 12431 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ)
12 peano2zm 12363 . . . . . . 7 ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
1311, 12syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
14 dvds0 15981 . . . . . 6 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
1513, 14syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ 0)
16 rmx0 40747 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
1716adantr 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 0) = 1)
18 rmy0 40751 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1918adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 0) = 0)
2019oveq2d 7291 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = ((𝐴𝐾) · 0))
213, 7zsubcld 12431 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
2221zcnd 12427 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2322mul01d 11174 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 0) = 0)
2420, 23eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 0)) = 0)
2517, 24oveq12d 7293 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = (1 − 0))
26 1m0e1 12094 . . . . . . . 8 (1 − 0) = 1
2725, 26eqtrdi 2794 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) = 1)
28 nn0cn 12243 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2928adantl 482 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
3029exp0d 13858 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑0) = 1)
3127, 30oveq12d 7293 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = (1 − 1))
32 1m1e0 12045 . . . . . 6 (1 − 1) = 0
3331, 32eqtrdi 2794 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)) = 0)
3415, 33breqtrrd 5102 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
35 rmx1 40748 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
3635adantr 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Xrm 1) = 𝐴)
37 rmy1 40752 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3837adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 Yrm 1) = 1)
3938oveq2d 7291 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = ((𝐴𝐾) · 1))
4022mulid1d 10992 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · 1) = (𝐴𝐾))
4139, 40eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) · (𝐴 Yrm 1)) = (𝐴𝐾))
4236, 41oveq12d 7293 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = (𝐴 − (𝐴𝐾)))
433zcnd 12427 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443, 29nncand 11337 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐴 − (𝐴𝐾)) = 𝐾)
4542, 44eqtrd 2778 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) = 𝐾)
4629exp1d 13859 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑1) = 𝐾)
4745, 46oveq12d 7293 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = (𝐾𝐾))
4829subidd 11320 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾𝐾) = 0)
4947, 48eqtrd 2778 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)) = 0)
5015, 49breqtrrd 5102 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
51 pm3.43 474 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
5213adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ)
535adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℤ)
54 simpll 764 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
55 nnz 12342 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
5655adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℤ)
57 frmx 40735 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
5857fovcl 7402 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
5954, 56, 58syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
6059nn0zd 12424 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℤ)
6121adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℤ)
62 frmy 40736 . . . . . . . . . . . . . . . . . 18 Yrm :((ℤ‘2) × ℤ)⟶ℤ
6362fovcl 7402 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6454, 56, 63syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℤ)
6561, 64zmulcld 12432 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℤ)
6660, 65zsubcld 12431 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ)
6753, 66zmulcld 12432 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ)
68 peano2zm 12363 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
6956, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℤ)
7057fovcl 7402 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7154, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℕ0)
7271nn0zd 12424 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℤ)
7362fovcl 7402 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7454, 69, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
7561, 74zmulcld 12432 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℤ)
7672, 75zsubcld 12431 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ)
7767, 76zsubcld 12431 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ)
7852, 77jca 512 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
7978adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ))
807adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℤ)
81 nnnn0 12240 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8281adantl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ0)
83 zexpcl 13797 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑏 ∈ ℕ0) → (𝐾𝑏) ∈ ℤ)
8480, 82, 83syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) ∈ ℤ)
8553, 84zmulcld 12432 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ)
86 nnm1nn0 12274 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℕ0)
8786adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝑏 − 1) ∈ ℕ0)
88 zexpcl 13797 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑏 − 1) ∈ ℕ0) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
8980, 87, 88syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℤ)
9085, 89zsubcld 12431 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ)
91 0z 12330 . . . . . . . . . . . . . . 15 0 ∈ ℤ
92 zaddcl 12360 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → (0 + (𝐾↑2)) ∈ ℤ)
9391, 10, 92sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) ∈ ℤ)
9493adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (0 + (𝐾↑2)) ∈ ℤ)
9589, 94zmulcld 12432 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ)
9690, 95jca 512 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9796adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ))
9852, 67, 853jca 1127 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
9998adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ))
10076, 89jca 512 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
101100adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ))
10213, 5, 53jca 1127 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
103102ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ))
10466, 84jca 512 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
105104adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ))
106 congid 40793 . . . . . . . . . . . . . . 15 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
10713, 5, 106syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
108107ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)))
109 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
110 congmul 40789 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℤ ∧ (𝐾𝑏) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((2 · 𝐴) − (2 · 𝐴)) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
111103, 105, 108, 109, 110syl112anc 1373 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
112111adantrl 713 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))))
113 simprl 768 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
114 congsub 40792 . . . . . . . . . . 11 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) ∈ ℤ ∧ ((2 · 𝐴) · (𝐾𝑏)) ∈ ℤ) ∧ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((2 · 𝐴) · (𝐾𝑏))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11599, 101, 112, 113, 114syl112anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))))
11613, 10zaddcld 12430 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
117116adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ)
118 congid 40793 . . . . . . . . . . . . . 14 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
11952, 89, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))))
120 0zd 12331 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
121 iddvds 15979 . . . . . . . . . . . . . . . . 17 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12213, 121syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
12313zcnd 12427 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℂ)
124123subid1d 11321 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) = ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
125122, 124breqtrrd 5102 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0))
126 congid 40793 . . . . . . . . . . . . . . . 16 ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
12713, 10, 126syl2anc 584 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))
128 congadd 40788 . . . . . . . . . . . . . . 15 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ 0 ∈ ℤ) ∧ ((𝐾↑2) ∈ ℤ ∧ (𝐾↑2) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) − 0) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑2) − (𝐾↑2)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
12913, 13, 120, 10, 10, 125, 127, 128syl322anc 1397 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
130129adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))
131 congmul 40789 . . . . . . . . . . . . 13 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ ∧ (𝐾↑(𝑏 − 1)) ∈ ℤ) ∧ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) ∈ ℤ ∧ (0 + (𝐾↑2)) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((𝐾↑(𝑏 − 1)) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) − (0 + (𝐾↑2))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13252, 89, 89, 117, 94, 119, 130, 131syl322anc 1397 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
13311zcnd 12427 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℂ)
13429sqcld 13862 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) ∈ ℂ)
135 1cnd 10970 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℂ)
136133, 134, 135addsubd 11353 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)))
1378zcnd 12427 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
138137, 134npcand 11336 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) = ((2 · 𝐴) · 𝐾))
139138oveq1d 7290 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) + (𝐾↑2)) − 1) = (((2 · 𝐴) · 𝐾) − 1))
140136, 139eqtr3d 2780 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
141140adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2)) = (((2 · 𝐴) · 𝐾) − 1))
142141oveq2d 7291 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) = ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)))
14328ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐾 ∈ ℂ)
144143, 87expcld 13864 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 − 1)) ∈ ℂ)
145137adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · 𝐾) ∈ ℂ)
146 1cnd 10970 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 1 ∈ ℂ)
147144, 145, 146subdid 11431 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (((2 · 𝐴) · 𝐾) − 1)) = (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)))
1485zcnd 12427 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (2 · 𝐴) ∈ ℂ)
149148adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
150144, 149, 143mul12d 11184 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
151 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
152 expm1t 13811 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
153143, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
154153oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐾𝑏)) = ((2 · 𝐴) · ((𝐾↑(𝑏 − 1)) · 𝐾)))
155150, 154eqtr4d 2781 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) = ((2 · 𝐴) · (𝐾𝑏)))
156144mulid1d 10992 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · 1) = (𝐾↑(𝑏 − 1)))
157155, 156oveq12d 7293 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · ((2 · 𝐴) · 𝐾)) − ((𝐾↑(𝑏 − 1)) · 1)) = (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))))
158142, 147, 1573eqtrrd 2783 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) = ((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))))
159158oveq1d 7290 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))) = (((𝐾↑(𝑏 − 1)) · (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) + (𝐾↑2))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
160132, 159breqtrrd 5102 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
161160adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
162 congtr 40787 . . . . . . . . . 10 (((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) ∈ ℤ) ∧ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) ∈ ℤ ∧ ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))) ∈ ℤ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − (((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1)))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · (𝐾𝑏)) − (𝐾↑(𝑏 − 1))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
16379, 97, 115, 161, 162syl112anc 1373 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
164 rmxluc 40758 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
16554, 56, 164syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))))
166 rmyluc 40759 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
16754, 56, 166syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
168167oveq2d 7291 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))))
1692zcnd 12427 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
170169ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝐴 ∈ ℂ)
171170, 143subcld 11332 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴𝐾) ∈ ℂ)
172 2cn 12048 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
17363zcnd 12427 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℂ)
17454, 56, 173syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm 𝑏) ∈ ℂ)
175174, 170mulcld 10995 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ)
176 mulcl 10955 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℂ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
177172, 175, 176sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℂ)
17873zcnd 12427 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
17954, 69, 178syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℂ)
180171, 177, 179subdid 11431 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1)))) = (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
181 2cnd 12051 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 2 ∈ ℂ)
182181, 174, 170mul12d 11184 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((𝐴 Yrm 𝑏) · (2 · 𝐴)))
183174, 149mulcomd 10996 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Yrm 𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
184182, 183eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm 𝑏)))
185184oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))))
186171, 149, 174mul12d 11184 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · ((2 · 𝐴) · (𝐴 Yrm 𝑏))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
187185, 186eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) = ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
188187oveq1d 7290 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴𝐾) · (2 · ((𝐴 Yrm 𝑏) · 𝐴))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
189168, 180, 1883eqtrd 2782 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))) = (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
190165, 189oveq12d 7293 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
19158nn0cnd 12295 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℂ)
19254, 56, 191syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm 𝑏) ∈ ℂ)
193149, 192mulcld 10995 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Xrm 𝑏)) ∈ ℂ)
19470nn0cnd 12295 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
19554, 69, 194syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐴 Xrm (𝑏 − 1)) ∈ ℂ)
196171, 174mulcld 10995 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm 𝑏)) ∈ ℂ)
197149, 196mulcld 10995 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) ∈ ℂ)
198171, 179mulcld 10995 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))) ∈ ℂ)
199193, 195, 197, 198sub4d 11381 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − (𝐴 Xrm (𝑏 − 1))) − (((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
200149, 192, 196subdid 11431 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
201200eqcomd 2744 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) = ((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))))
202201oveq1d 7290 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑏)) − ((2 · 𝐴) · ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
203190, 199, 2023eqtrd 2782 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) = (((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))))
204143, 82expp1d 13865 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾𝑏) · 𝐾))
205 nncn 11981 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
206205adantl 482 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℂ)
207 ax-1cn 10929 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
208 npcan 11230 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 − 1) + 1) = 𝑏)
209206, 207, 208sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝑏 − 1) + 1) = 𝑏)
210209oveq2d 7291 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = (𝐾𝑏))
211143, 87expp1d 13865 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑((𝑏 − 1) + 1)) = ((𝐾↑(𝑏 − 1)) · 𝐾))
212210, 211eqtr3d 2780 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾𝑏) = ((𝐾↑(𝑏 − 1)) · 𝐾))
213212oveq1d 7290 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾𝑏) · 𝐾) = (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾))
214144, 143, 143mulassd 10998 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)))
215134addid2d 11176 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (0 + (𝐾↑2)) = (𝐾↑2))
21629sqvald 13861 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾↑2) = (𝐾 · 𝐾))
217215, 216eqtr2d 2779 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
218217adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾 · 𝐾) = (0 + (𝐾↑2)))
219218oveq2d 7291 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((𝐾↑(𝑏 − 1)) · (𝐾 · 𝐾)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
220214, 219eqtrd 2778 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐾↑(𝑏 − 1)) · 𝐾) · 𝐾) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
221204, 213, 2203eqtrd 2782 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (𝐾↑(𝑏 + 1)) = ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2))))
222203, 221oveq12d 7293 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
223222adantr 481 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))) = ((((2 · 𝐴) · ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏)))) − ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))) − ((𝐾↑(𝑏 − 1)) · (0 + (𝐾↑2)))))
224163, 223breqtrrd 5102 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) ∧ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
225224ex 413 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑏 ∈ ℕ) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
226225expcom 414 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
227226a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))) ∧ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
22851, 227syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
229 oveq2 7283 . . . . . . . 8 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
230 oveq2 7283 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
231230oveq2d 7291 . . . . . . . 8 (𝑎 = 0 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 0)))
232229, 231oveq12d 7293 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))))
233 oveq2 7283 . . . . . . 7 (𝑎 = 0 → (𝐾𝑎) = (𝐾↑0))
234232, 233oveq12d 7293 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))
235234breq2d 5086 . . . . 5 (𝑎 = 0 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0))))
236235imbi2d 341 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 0) − ((𝐴𝐾) · (𝐴 Yrm 0))) − (𝐾↑0)))))
237 oveq2 7283 . . . . . . . 8 (𝑎 = 1 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 1))
238 oveq2 7283 . . . . . . . . 9 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
239238oveq2d 7291 . . . . . . . 8 (𝑎 = 1 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 1)))
240237, 239oveq12d 7293 . . . . . . 7 (𝑎 = 1 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))))
241 oveq2 7283 . . . . . . 7 (𝑎 = 1 → (𝐾𝑎) = (𝐾↑1))
242240, 241oveq12d 7293 . . . . . 6 (𝑎 = 1 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))
243242breq2d 5086 . . . . 5 (𝑎 = 1 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1))))
244243imbi2d 341 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 1) − ((𝐴𝐾) · (𝐴 Yrm 1))) − (𝐾↑1)))))
245 oveq2 7283 . . . . . . . 8 (𝑎 = (𝑏 − 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 − 1)))
246 oveq2 7283 . . . . . . . . 9 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
247246oveq2d 7291 . . . . . . . 8 (𝑎 = (𝑏 − 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1))))
248245, 247oveq12d 7293 . . . . . . 7 (𝑎 = (𝑏 − 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))))
249 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐾𝑎) = (𝐾↑(𝑏 − 1)))
250248, 249oveq12d 7293 . . . . . 6 (𝑎 = (𝑏 − 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))
251250breq2d 5086 . . . . 5 (𝑎 = (𝑏 − 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1)))))
252251imbi2d 341 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 − 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 − 1)))) − (𝐾↑(𝑏 − 1))))))
253 oveq2 7283 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
254 oveq2 7283 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
255254oveq2d 7291 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑏)))
256253, 255oveq12d 7293 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))))
257 oveq2 7283 . . . . . . 7 (𝑎 = 𝑏 → (𝐾𝑎) = (𝐾𝑏))
258256, 257oveq12d 7293 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))
259258breq2d 5086 . . . . 5 (𝑎 = 𝑏 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏))))
260259imbi2d 341 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑏) − ((𝐴𝐾) · (𝐴 Yrm 𝑏))) − (𝐾𝑏)))))
261 oveq2 7283 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
262 oveq2 7283 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
263262oveq2d 7291 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1))))
264261, 263oveq12d 7293 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))))
265 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐾𝑎) = (𝐾↑(𝑏 + 1)))
266264, 265oveq12d 7293 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))
267266breq2d 5086 . . . . 5 (𝑎 = (𝑏 + 1) → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1)))))
268267imbi2d 341 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm (𝑏 + 1)) − ((𝐴𝐾) · (𝐴 Yrm (𝑏 + 1)))) − (𝐾↑(𝑏 + 1))))))
269 oveq2 7283 . . . . . . . 8 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
270 oveq2 7283 . . . . . . . . 9 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
271270oveq2d 7291 . . . . . . . 8 (𝑎 = 𝑁 → ((𝐴𝐾) · (𝐴 Yrm 𝑎)) = ((𝐴𝐾) · (𝐴 Yrm 𝑁)))
272269, 271oveq12d 7293 . . . . . . 7 (𝑎 = 𝑁 → ((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) = ((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))))
273 oveq2 7283 . . . . . . 7 (𝑎 = 𝑁 → (𝐾𝑎) = (𝐾𝑁))
274272, 273oveq12d 7293 . . . . . 6 (𝑎 = 𝑁 → (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) = (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
275274breq2d 5086 . . . . 5 (𝑎 = 𝑁 → (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎)) ↔ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
276275imbi2d 341 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑎) − ((𝐴𝐾) · (𝐴 Yrm 𝑎))) − (𝐾𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))))
27734, 50, 228, 236, 244, 252, 260, 268, 2762nn0ind 40767 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁))))
278277impcom 408 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
2792783impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∥ (((𝐴 Xrm 𝑁) − ((𝐴𝐾) · (𝐴 Yrm 𝑁))) − (𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cexp 13782  cdvds 15963   Xrm crmx 40722   Yrm crmy 40723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667  df-rmx 40724  df-rmy 40725
This theorem is referenced by:  jm3.1  40842
  Copyright terms: Public domain W3C validator