Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Structured version   Visualization version   GIF version

Theorem jm2.15nn0 42992
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))

Proof of Theorem jm2.15nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12886 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 eluzelz 12886 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
3 zsubcl 12657 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∈ ℤ)
5 0z 12622 . . . . . 6 0 ∈ ℤ
6 congid 42960 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴𝐵) ∥ (0 − 0))
74, 5, 6sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (0 − 0))
8 rmy0 42918 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
9 rmy0 42918 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 0) = 0)
108, 9oveqan12d 7450 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 0) − (𝐵 Yrm 0)) = (0 − 0))
117, 10breqtrrd 5176 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
12 1z 12645 . . . . . 6 1 ∈ ℤ
13 congid 42960 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴𝐵) ∥ (1 − 1))
144, 12, 13sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (1 − 1))
15 rmy1 42919 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
16 rmy1 42919 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 1) = 1)
1715, 16oveqan12d 7450 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 1) − (𝐵 Yrm 1)) = (1 − 1))
1814, 17breqtrrd 5176 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
19 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
2043ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∈ ℤ)
21 2z 12647 . . . . . . . . . . 11 2 ∈ ℤ
2221a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 2 ∈ ℤ)
23 simp2l 1198 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ (ℤ‘2))
24 nnz 12632 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
25243ad2ant1 1132 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝑏 ∈ ℤ)
26 frmy 42903 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2726fovcl 7561 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2823, 25, 27syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm 𝑏) ∈ ℤ)
291adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
30293ad2ant2 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ ℤ)
3128, 30zmulcld 12726 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
3222, 31zmulcld 12726 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
33 simp2r 1199 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ (ℤ‘2))
3426fovcl 7561 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm 𝑏) ∈ ℤ)
3533, 25, 34syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm 𝑏) ∈ ℤ)
362adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
37363ad2ant2 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ ℤ)
3835, 37zmulcld 12726 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ)
3922, 38zmulcld 12726 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ)
40 peano2zm 12658 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
4124, 40syl 17 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℤ)
42413ad2ant1 1132 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝑏 − 1) ∈ ℤ)
4326fovcl 7561 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4423, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4526fovcl 7561 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
4633, 42, 45syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
47 congid 42960 . . . . . . . . . . 11 (((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴𝐵) ∥ (2 − 2))
4820, 21, 47sylancl 586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (2 − 2))
49 simp3r 1201 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
50 iddvds 16304 . . . . . . . . . . . 12 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∥ (𝐴𝐵))
5120, 50syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (𝐴𝐵))
52 congmul 42956 . . . . . . . . . . 11 ((((𝐴𝐵) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐵 Yrm 𝑏) ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)) ∧ (𝐴𝐵) ∥ (𝐴𝐵))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1397 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
54 congmul 42956 . . . . . . . . . 10 ((((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ) ∧ ((𝐴𝐵) ∥ (2 − 2) ∧ (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1397 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
56 simp3l 1200 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
57 congsub 42959 . . . . . . . . 9 ((((𝐴𝐵) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝐵 Yrm (𝑏 − 1)) ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1397 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
59 rmyluc 42926 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6023, 25, 59syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
61 rmyluc 42926 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6233, 25, 61syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6360, 62oveq12d 7449 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
6458, 63breqtrrd 5176 . . . . . . 7 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
65643exp 1118 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6665a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6719, 66syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
68 oveq2 7439 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
69 oveq2 7439 . . . . . . 7 (𝑎 = 0 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 0))
7068, 69oveq12d 7449 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
7170breq2d 5160 . . . . 5 (𝑎 = 0 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0))))
7271imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))))
73 oveq2 7439 . . . . . . 7 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
74 oveq2 7439 . . . . . . 7 (𝑎 = 1 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 1))
7573, 74oveq12d 7449 . . . . . 6 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
7675breq2d 5160 . . . . 5 (𝑎 = 1 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1))))
7776imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))))
78 oveq2 7439 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
79 oveq2 7439 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 − 1)))
8078, 79oveq12d 7449 . . . . . 6 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
8180breq2d 5160 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))))
8281imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))))
83 oveq2 7439 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
84 oveq2 7439 . . . . . . 7 (𝑎 = 𝑏 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑏))
8583, 84oveq12d 7449 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
8685breq2d 5160 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))))
8786imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
88 oveq2 7439 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
89 oveq2 7439 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 + 1)))
9088, 89oveq12d 7449 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
9190breq2d 5160 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1)))))
9291imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
93 oveq2 7439 . . . . . . 7 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
94 oveq2 7439 . . . . . . 7 (𝑎 = 𝑁 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑁))
9593, 94oveq12d 7449 . . . . . 6 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
9695breq2d 5160 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9796imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))))
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 42934 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9998impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
100993impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  cdvds 16287   Yrm crmy 42889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-squarenn 42829  df-pell1qr 42830  df-pell14qr 42831  df-pell1234qr 42832  df-pellfund 42833  df-rmx 42890  df-rmy 42891
This theorem is referenced by:  jm2.27a  42994  jm2.27c  42996
  Copyright terms: Public domain W3C validator