Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Structured version   Visualization version   GIF version

Theorem jm2.15nn0 42976
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))

Proof of Theorem jm2.15nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12745 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 eluzelz 12745 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
3 zsubcl 12517 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∈ ℤ)
5 0z 12482 . . . . . 6 0 ∈ ℤ
6 congid 42944 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴𝐵) ∥ (0 − 0))
74, 5, 6sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (0 − 0))
8 rmy0 42902 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
9 rmy0 42902 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 0) = 0)
108, 9oveqan12d 7368 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 0) − (𝐵 Yrm 0)) = (0 − 0))
117, 10breqtrrd 5120 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
12 1z 12505 . . . . . 6 1 ∈ ℤ
13 congid 42944 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴𝐵) ∥ (1 − 1))
144, 12, 13sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (1 − 1))
15 rmy1 42903 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
16 rmy1 42903 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 1) = 1)
1715, 16oveqan12d 7368 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 1) − (𝐵 Yrm 1)) = (1 − 1))
1814, 17breqtrrd 5120 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
19 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
2043ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∈ ℤ)
21 2z 12507 . . . . . . . . . . 11 2 ∈ ℤ
2221a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 2 ∈ ℤ)
23 simp2l 1200 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ (ℤ‘2))
24 nnz 12492 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
25243ad2ant1 1133 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝑏 ∈ ℤ)
26 frmy 42887 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2726fovcl 7477 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2823, 25, 27syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm 𝑏) ∈ ℤ)
291adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ ℤ)
3128, 30zmulcld 12586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
3222, 31zmulcld 12586 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
33 simp2r 1201 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ (ℤ‘2))
3426fovcl 7477 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm 𝑏) ∈ ℤ)
3533, 25, 34syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm 𝑏) ∈ ℤ)
362adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
37363ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ ℤ)
3835, 37zmulcld 12586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ)
3922, 38zmulcld 12586 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ)
40 peano2zm 12518 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
4124, 40syl 17 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℤ)
42413ad2ant1 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝑏 − 1) ∈ ℤ)
4326fovcl 7477 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4423, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4526fovcl 7477 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
4633, 42, 45syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
47 congid 42944 . . . . . . . . . . 11 (((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴𝐵) ∥ (2 − 2))
4820, 21, 47sylancl 586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (2 − 2))
49 simp3r 1203 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
50 iddvds 16180 . . . . . . . . . . . 12 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∥ (𝐴𝐵))
5120, 50syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (𝐴𝐵))
52 congmul 42940 . . . . . . . . . . 11 ((((𝐴𝐵) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐵 Yrm 𝑏) ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)) ∧ (𝐴𝐵) ∥ (𝐴𝐵))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1400 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
54 congmul 42940 . . . . . . . . . 10 ((((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ) ∧ ((𝐴𝐵) ∥ (2 − 2) ∧ (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1400 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
56 simp3l 1202 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
57 congsub 42943 . . . . . . . . 9 ((((𝐴𝐵) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝐵 Yrm (𝑏 − 1)) ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1400 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
59 rmyluc 42910 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6023, 25, 59syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
61 rmyluc 42910 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6233, 25, 61syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6360, 62oveq12d 7367 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
6458, 63breqtrrd 5120 . . . . . . 7 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
65643exp 1119 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6665a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6719, 66syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
68 oveq2 7357 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
69 oveq2 7357 . . . . . . 7 (𝑎 = 0 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 0))
7068, 69oveq12d 7367 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
7170breq2d 5104 . . . . 5 (𝑎 = 0 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0))))
7271imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))))
73 oveq2 7357 . . . . . . 7 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
74 oveq2 7357 . . . . . . 7 (𝑎 = 1 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 1))
7573, 74oveq12d 7367 . . . . . 6 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
7675breq2d 5104 . . . . 5 (𝑎 = 1 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1))))
7776imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))))
78 oveq2 7357 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
79 oveq2 7357 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 − 1)))
8078, 79oveq12d 7367 . . . . . 6 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
8180breq2d 5104 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))))
8281imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))))
83 oveq2 7357 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
84 oveq2 7357 . . . . . . 7 (𝑎 = 𝑏 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑏))
8583, 84oveq12d 7367 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
8685breq2d 5104 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))))
8786imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
88 oveq2 7357 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
89 oveq2 7357 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 + 1)))
9088, 89oveq12d 7367 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
9190breq2d 5104 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1)))))
9291imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
93 oveq2 7357 . . . . . . 7 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
94 oveq2 7357 . . . . . . 7 (𝑎 = 𝑁 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑁))
9593, 94oveq12d 7367 . . . . . 6 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
9695breq2d 5104 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9796imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))))
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 42918 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9998impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
100993impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  cdvds 16163   Yrm crmy 42874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-squarenn 42814  df-pell1qr 42815  df-pell14qr 42816  df-pell1234qr 42817  df-pellfund 42818  df-rmx 42875  df-rmy 42876
This theorem is referenced by:  jm2.27a  42978  jm2.27c  42980
  Copyright terms: Public domain W3C validator