Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Structured version   Visualization version   GIF version

Theorem jm2.15nn0 42965
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))

Proof of Theorem jm2.15nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12779 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 eluzelz 12779 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
3 zsubcl 12551 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∈ ℤ)
5 0z 12516 . . . . . 6 0 ∈ ℤ
6 congid 42933 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴𝐵) ∥ (0 − 0))
74, 5, 6sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (0 − 0))
8 rmy0 42891 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
9 rmy0 42891 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 0) = 0)
108, 9oveqan12d 7388 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 0) − (𝐵 Yrm 0)) = (0 − 0))
117, 10breqtrrd 5130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
12 1z 12539 . . . . . 6 1 ∈ ℤ
13 congid 42933 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴𝐵) ∥ (1 − 1))
144, 12, 13sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (1 − 1))
15 rmy1 42892 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
16 rmy1 42892 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 1) = 1)
1715, 16oveqan12d 7388 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 1) − (𝐵 Yrm 1)) = (1 − 1))
1814, 17breqtrrd 5130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
19 pm3.43 473 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
2043ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∈ ℤ)
21 2z 12541 . . . . . . . . . . 11 2 ∈ ℤ
2221a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 2 ∈ ℤ)
23 simp2l 1200 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ (ℤ‘2))
24 nnz 12526 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
25243ad2ant1 1133 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝑏 ∈ ℤ)
26 frmy 42876 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2726fovcl 7497 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2823, 25, 27syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm 𝑏) ∈ ℤ)
291adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ ℤ)
3128, 30zmulcld 12620 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
3222, 31zmulcld 12620 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
33 simp2r 1201 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ (ℤ‘2))
3426fovcl 7497 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm 𝑏) ∈ ℤ)
3533, 25, 34syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm 𝑏) ∈ ℤ)
362adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
37363ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ ℤ)
3835, 37zmulcld 12620 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ)
3922, 38zmulcld 12620 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ)
40 peano2zm 12552 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
4124, 40syl 17 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℤ)
42413ad2ant1 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝑏 − 1) ∈ ℤ)
4326fovcl 7497 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4423, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4526fovcl 7497 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
4633, 42, 45syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
47 congid 42933 . . . . . . . . . . 11 (((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴𝐵) ∥ (2 − 2))
4820, 21, 47sylancl 586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (2 − 2))
49 simp3r 1203 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
50 iddvds 16215 . . . . . . . . . . . 12 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∥ (𝐴𝐵))
5120, 50syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (𝐴𝐵))
52 congmul 42929 . . . . . . . . . . 11 ((((𝐴𝐵) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐵 Yrm 𝑏) ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)) ∧ (𝐴𝐵) ∥ (𝐴𝐵))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1400 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
54 congmul 42929 . . . . . . . . . 10 ((((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ) ∧ ((𝐴𝐵) ∥ (2 − 2) ∧ (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1400 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
56 simp3l 1202 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
57 congsub 42932 . . . . . . . . 9 ((((𝐴𝐵) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝐵 Yrm (𝑏 − 1)) ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1400 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
59 rmyluc 42899 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6023, 25, 59syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
61 rmyluc 42899 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6233, 25, 61syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6360, 62oveq12d 7387 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
6458, 63breqtrrd 5130 . . . . . . 7 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
65643exp 1119 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6665a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6719, 66syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
68 oveq2 7377 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
69 oveq2 7377 . . . . . . 7 (𝑎 = 0 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 0))
7068, 69oveq12d 7387 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
7170breq2d 5114 . . . . 5 (𝑎 = 0 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0))))
7271imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))))
73 oveq2 7377 . . . . . . 7 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
74 oveq2 7377 . . . . . . 7 (𝑎 = 1 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 1))
7573, 74oveq12d 7387 . . . . . 6 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
7675breq2d 5114 . . . . 5 (𝑎 = 1 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1))))
7776imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))))
78 oveq2 7377 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
79 oveq2 7377 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 − 1)))
8078, 79oveq12d 7387 . . . . . 6 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
8180breq2d 5114 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))))
8281imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))))
83 oveq2 7377 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
84 oveq2 7377 . . . . . . 7 (𝑎 = 𝑏 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑏))
8583, 84oveq12d 7387 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
8685breq2d 5114 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))))
8786imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
88 oveq2 7377 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
89 oveq2 7377 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 + 1)))
9088, 89oveq12d 7387 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
9190breq2d 5114 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1)))))
9291imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
93 oveq2 7377 . . . . . . 7 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
94 oveq2 7377 . . . . . . 7 (𝑎 = 𝑁 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑁))
9593, 94oveq12d 7387 . . . . . 6 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
9695breq2d 5114 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9796imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))))
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 42907 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9998impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
100993impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  cdvds 16198   Yrm crmy 42862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-squarenn 42802  df-pell1qr 42803  df-pell14qr 42804  df-pell1234qr 42805  df-pellfund 42806  df-rmx 42863  df-rmy 42864
This theorem is referenced by:  jm2.27a  42967  jm2.27c  42969
  Copyright terms: Public domain W3C validator