Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Structured version   Visualization version   GIF version

Theorem jm2.15nn0 40825
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))

Proof of Theorem jm2.15nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12592 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 eluzelz 12592 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
3 zsubcl 12362 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∈ ℤ)
5 0z 12330 . . . . . 6 0 ∈ ℤ
6 congid 40793 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴𝐵) ∥ (0 − 0))
74, 5, 6sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (0 − 0))
8 rmy0 40751 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
9 rmy0 40751 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 0) = 0)
108, 9oveqan12d 7294 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 0) − (𝐵 Yrm 0)) = (0 − 0))
117, 10breqtrrd 5102 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
12 1z 12350 . . . . . 6 1 ∈ ℤ
13 congid 40793 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴𝐵) ∥ (1 − 1))
144, 12, 13sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (1 − 1))
15 rmy1 40752 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
16 rmy1 40752 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 1) = 1)
1715, 16oveqan12d 7294 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 1) − (𝐵 Yrm 1)) = (1 − 1))
1814, 17breqtrrd 5102 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
19 pm3.43 474 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
2043ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∈ ℤ)
21 2z 12352 . . . . . . . . . . 11 2 ∈ ℤ
2221a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 2 ∈ ℤ)
23 simp2l 1198 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ (ℤ‘2))
24 nnz 12342 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
25243ad2ant1 1132 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝑏 ∈ ℤ)
26 frmy 40736 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2726fovcl 7402 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2823, 25, 27syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm 𝑏) ∈ ℤ)
291adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
30293ad2ant2 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ ℤ)
3128, 30zmulcld 12432 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
3222, 31zmulcld 12432 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
33 simp2r 1199 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ (ℤ‘2))
3426fovcl 7402 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm 𝑏) ∈ ℤ)
3533, 25, 34syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm 𝑏) ∈ ℤ)
362adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
37363ad2ant2 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ ℤ)
3835, 37zmulcld 12432 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ)
3922, 38zmulcld 12432 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ)
40 peano2zm 12363 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
4124, 40syl 17 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℤ)
42413ad2ant1 1132 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝑏 − 1) ∈ ℤ)
4326fovcl 7402 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4423, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4526fovcl 7402 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
4633, 42, 45syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
47 congid 40793 . . . . . . . . . . 11 (((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴𝐵) ∥ (2 − 2))
4820, 21, 47sylancl 586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (2 − 2))
49 simp3r 1201 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
50 iddvds 15979 . . . . . . . . . . . 12 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∥ (𝐴𝐵))
5120, 50syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (𝐴𝐵))
52 congmul 40789 . . . . . . . . . . 11 ((((𝐴𝐵) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐵 Yrm 𝑏) ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)) ∧ (𝐴𝐵) ∥ (𝐴𝐵))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1397 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
54 congmul 40789 . . . . . . . . . 10 ((((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ) ∧ ((𝐴𝐵) ∥ (2 − 2) ∧ (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1397 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
56 simp3l 1200 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
57 congsub 40792 . . . . . . . . 9 ((((𝐴𝐵) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝐵 Yrm (𝑏 − 1)) ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1397 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
59 rmyluc 40759 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6023, 25, 59syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
61 rmyluc 40759 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6233, 25, 61syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6360, 62oveq12d 7293 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
6458, 63breqtrrd 5102 . . . . . . 7 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
65643exp 1118 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6665a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6719, 66syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
68 oveq2 7283 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
69 oveq2 7283 . . . . . . 7 (𝑎 = 0 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 0))
7068, 69oveq12d 7293 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
7170breq2d 5086 . . . . 5 (𝑎 = 0 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0))))
7271imbi2d 341 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))))
73 oveq2 7283 . . . . . . 7 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
74 oveq2 7283 . . . . . . 7 (𝑎 = 1 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 1))
7573, 74oveq12d 7293 . . . . . 6 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
7675breq2d 5086 . . . . 5 (𝑎 = 1 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1))))
7776imbi2d 341 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))))
78 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
79 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 − 1)))
8078, 79oveq12d 7293 . . . . . 6 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
8180breq2d 5086 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))))
8281imbi2d 341 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))))
83 oveq2 7283 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
84 oveq2 7283 . . . . . . 7 (𝑎 = 𝑏 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑏))
8583, 84oveq12d 7293 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
8685breq2d 5086 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))))
8786imbi2d 341 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
88 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
89 oveq2 7283 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 + 1)))
9088, 89oveq12d 7293 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
9190breq2d 5086 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1)))))
9291imbi2d 341 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
93 oveq2 7283 . . . . . . 7 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
94 oveq2 7283 . . . . . . 7 (𝑎 = 𝑁 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑁))
9593, 94oveq12d 7293 . . . . . 6 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
9695breq2d 5086 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9796imbi2d 341 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))))
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 40767 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9998impcom 408 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
100993impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cdvds 15963   Yrm crmy 40723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667  df-rmx 40724  df-rmy 40725
This theorem is referenced by:  jm2.27a  40827  jm2.27c  40829
  Copyright terms: Public domain W3C validator