Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Structured version   Visualization version   GIF version

Theorem jm2.15nn0 41313
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))

Proof of Theorem jm2.15nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12773 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 eluzelz 12773 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
3 zsubcl 12545 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∈ ℤ)
5 0z 12510 . . . . . 6 0 ∈ ℤ
6 congid 41281 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴𝐵) ∥ (0 − 0))
74, 5, 6sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (0 − 0))
8 rmy0 41239 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
9 rmy0 41239 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 0) = 0)
108, 9oveqan12d 7376 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 0) − (𝐵 Yrm 0)) = (0 − 0))
117, 10breqtrrd 5133 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
12 1z 12533 . . . . . 6 1 ∈ ℤ
13 congid 41281 . . . . . 6 (((𝐴𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴𝐵) ∥ (1 − 1))
144, 12, 13sylancl 586 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ (1 − 1))
15 rmy1 41240 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
16 rmy1 41240 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 Yrm 1) = 1)
1715, 16oveqan12d 7376 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 Yrm 1) − (𝐵 Yrm 1)) = (1 − 1))
1814, 17breqtrrd 5133 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
19 pm3.43 474 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
2043ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∈ ℤ)
21 2z 12535 . . . . . . . . . . 11 2 ∈ ℤ
2221a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 2 ∈ ℤ)
23 simp2l 1199 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ (ℤ‘2))
24 nnz 12520 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
25243ad2ant1 1133 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝑏 ∈ ℤ)
26 frmy 41224 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2726fovcl 7484 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2823, 25, 27syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm 𝑏) ∈ ℤ)
291adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐴 ∈ ℤ)
3128, 30zmulcld 12613 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
3222, 31zmulcld 12613 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
33 simp2r 1200 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ (ℤ‘2))
3426fovcl 7484 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm 𝑏) ∈ ℤ)
3533, 25, 34syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm 𝑏) ∈ ℤ)
362adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
37363ad2ant2 1134 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → 𝐵 ∈ ℤ)
3835, 37zmulcld 12613 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ)
3922, 38zmulcld 12613 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ)
40 peano2zm 12546 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
4124, 40syl 17 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑏 − 1) ∈ ℤ)
42413ad2ant1 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝑏 − 1) ∈ ℤ)
4326fovcl 7484 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4423, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
4526fovcl 7484 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
4633, 42, 45syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 − 1)) ∈ ℤ)
47 congid 41281 . . . . . . . . . . 11 (((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴𝐵) ∥ (2 − 2))
4820, 21, 47sylancl 586 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (2 − 2))
49 simp3r 1202 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
50 iddvds 16152 . . . . . . . . . . . 12 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∥ (𝐴𝐵))
5120, 50syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (𝐴𝐵))
52 congmul 41277 . . . . . . . . . . 11 ((((𝐴𝐵) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐵 Yrm 𝑏) ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)) ∧ (𝐴𝐵) ∥ (𝐴𝐵))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1398 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))
54 congmul 41277 . . . . . . . . . 10 ((((𝐴𝐵) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ ((𝐵 Yrm 𝑏) · 𝐵) ∈ ℤ) ∧ ((𝐴𝐵) ∥ (2 − 2) ∧ (𝐴𝐵) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − ((𝐵 Yrm 𝑏) · 𝐵)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1398 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))))
56 simp3l 1201 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
57 congsub 41280 . . . . . . . . 9 ((((𝐴𝐵) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · ((𝐵 Yrm 𝑏) · 𝐵)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝐵 Yrm (𝑏 − 1)) ∈ ℤ) ∧ ((𝐴𝐵) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · ((𝐵 Yrm 𝑏) · 𝐵))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1398 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
59 rmyluc 41247 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6023, 25, 59syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
61 rmyluc 41247 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6233, 25, 61syl2anc 584 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐵 Yrm (𝑏 + 1)) = ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1))))
6360, 62oveq12d 7375 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · ((𝐵 Yrm 𝑏) · 𝐵)) − (𝐵 Yrm (𝑏 − 1)))))
6458, 63breqtrrd 5133 . . . . . . 7 ((𝑏 ∈ ℕ ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
65643exp 1119 . . . . . 6 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6665a2d 29 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))) ∧ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
6719, 66syl5 34 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))) → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
68 oveq2 7365 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
69 oveq2 7365 . . . . . . 7 (𝑎 = 0 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 0))
7068, 69oveq12d 7375 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 0) − (𝐵 Yrm 0)))
7170breq2d 5117 . . . . 5 (𝑎 = 0 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0))))
7271imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 0) − (𝐵 Yrm 0)))))
73 oveq2 7365 . . . . . . 7 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
74 oveq2 7365 . . . . . . 7 (𝑎 = 1 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 1))
7573, 74oveq12d 7375 . . . . . 6 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 1) − (𝐵 Yrm 1)))
7675breq2d 5117 . . . . 5 (𝑎 = 1 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1))))
7776imbi2d 340 . . . 4 (𝑎 = 1 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 1) − (𝐵 Yrm 1)))))
78 oveq2 7365 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
79 oveq2 7365 . . . . . . 7 (𝑎 = (𝑏 − 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 − 1)))
8078, 79oveq12d 7375 . . . . . 6 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))
8180breq2d 5117 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1)))))
8281imbi2d 340 . . . 4 (𝑎 = (𝑏 − 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝐵 Yrm (𝑏 − 1))))))
83 oveq2 7365 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
84 oveq2 7365 . . . . . . 7 (𝑎 = 𝑏 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑏))
8583, 84oveq12d 7375 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))
8685breq2d 5117 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏))))
8786imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑏) − (𝐵 Yrm 𝑏)))))
88 oveq2 7365 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
89 oveq2 7365 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐵 Yrm 𝑎) = (𝐵 Yrm (𝑏 + 1)))
9088, 89oveq12d 7375 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))
9190breq2d 5117 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1)))))
9291imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝐵 Yrm (𝑏 + 1))))))
93 oveq2 7365 . . . . . . 7 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
94 oveq2 7365 . . . . . . 7 (𝑎 = 𝑁 → (𝐵 Yrm 𝑎) = (𝐵 Yrm 𝑁))
9593, 94oveq12d 7375 . . . . . 6 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) = ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
9695breq2d 5117 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎)) ↔ (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9796imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑎) − (𝐵 Yrm 𝑎))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))))
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 41255 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁))))
9998impcom 408 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
100993impa 1110 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵) ∥ ((𝐴 Yrm 𝑁) − (𝐵 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cdvds 16136   Yrm crmy 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-squarenn 41150  df-pell1qr 41151  df-pell14qr 41152  df-pell1234qr 41153  df-pellfund 41154  df-rmx 41211  df-rmy 41212
This theorem is referenced by:  jm2.27a  41315  jm2.27c  41317
  Copyright terms: Public domain W3C validator