MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd Structured version   Visualization version   GIF version

Theorem caubnd 15382
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 15302 . . . 4 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
21ralimi 3074 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ)
3 cau3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
43r19.29uz 15374 . . . . . 6 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
54ex 412 . . . . 5 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
65ralimdv 3155 . . . 4 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
73caubnd2 15381 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧)
86, 7syl6 35 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧))
9 fzssuz 13587 . . . . . . . 8 (𝑀...𝑗) ⊆ (ℤ𝑀)
109, 3sseqtrri 4013 . . . . . . 7 (𝑀...𝑗) ⊆ 𝑍
11 ssralv 4032 . . . . . . 7 ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ))
1210, 11ax-mp 5 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ)
13 fzfi 13995 . . . . . . . 8 (𝑀...𝑗) ∈ Fin
14 fimaxre3 12193 . . . . . . . 8 (((𝑀...𝑗) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
1513, 14mpan 690 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
16 peano2re 11413 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1716adantl 481 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
18 ltp1 12086 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
1918adantl 481 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 < (𝑥 + 1))
2016adantl 481 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
21 lelttr 11330 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2220, 21mpd3an3 1464 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2319, 22mpan2d 694 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2423expcom 413 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑘)) ∈ ℝ → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2524ralimdv 3155 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2625impcom 407 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
27 ralim 3077 . . . . . . . . . 10 (∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
2826, 27syl 17 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
29 brralrspcev 5184 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)) → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3017, 28, 29syl6an 684 . . . . . . . 8 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3130rexlimdva 3142 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3215, 31mpd 15 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3312, 32syl 17 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
34 max1 13206 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
35343adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
36 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (abs‘(𝐹𝑘)) ∈ ℝ)
37 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ∈ ℝ)
38 ifcl 4551 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
3938ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
40393adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
41 ltletr 11332 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4236, 37, 40, 41syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4335, 42mpan2d 694 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑤 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
44 max2 13208 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
45443adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
46 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ∈ ℝ)
47 ltletr 11332 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4836, 46, 40, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4945, 48mpan2d 694 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑧 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5043, 49jaod 859 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
51503expia 1121 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ ℝ → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
5251ralimdv 3155 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
53 ralim 3077 . . . . . . . . . . . . 13 (∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5452, 53syl6 35 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
55 brralrspcev 5184 . . . . . . . . . . . . . 14 ((if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
5655ex 412 . . . . . . . . . . . . 13 (if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5739, 56syl 17 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5854, 57syl6d 75 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
59 uzssz 12878 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ𝑀) ⊆ ℤ
603, 59eqsstri 4010 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℤ
6160sseli 3959 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
6260sseli 3959 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝑍𝑗 ∈ ℤ)
63 uztric 12881 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
6461, 62, 63syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
65 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗𝑍𝑘𝑍) → 𝑘𝑍)
6665, 3eleqtrdi 2845 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
67 elfzuzb 13540 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
6867baib 535 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
7069orbi1d 916 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) ↔ (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗))))
7164, 70mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)))
7271ex 412 . . . . . . . . . . . . . . . . 17 (𝑗𝑍 → (𝑘𝑍 → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗))))
73 pm3.48 965 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
7472, 73syl9 77 . . . . . . . . . . . . . . . 16 (𝑗𝑍 → (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → (𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
7574alimdv 1916 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
76 df-ral 3053 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ↔ ∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤))
77 df-ral 3053 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 ↔ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧))
7876, 77anbi12i 628 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
79 19.26 1870 . . . . . . . . . . . . . . . 16 (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
8078, 79bitr4i 278 . . . . . . . . . . . . . . 15 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
81 df-ral 3053 . . . . . . . . . . . . . . 15 (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
8275, 80, 813imtr4g 296 . . . . . . . . . . . . . 14 (𝑗𝑍 → ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
83823impib 1116 . . . . . . . . . . . . 13 ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))
8483imim1i 63 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
85843expd 1354 . . . . . . . . . . 11 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
8658, 85syl6 35 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8786com23 86 . . . . . . . . 9 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑗𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8887expimpd 453 . . . . . . . 8 (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8988com3r 87 . . . . . . 7 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9089com34 91 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9190rexlimdv 3140 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
9233, 91mpd 15 . . . 4 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
9392rexlimdvv 3201 . . 3 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
942, 8, 93sylsyld 61 . 2 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
9594imp 406 1 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931  ifcif 4505   class class class wbr 5124  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  climbdd  15693
  Copyright terms: Public domain W3C validator