| Step | Hyp | Ref
| Expression |
| 1 | | abscl 15302 |
. . . 4
⊢ ((𝐹‘𝑘) ∈ ℂ → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 2 | 1 | ralimi 3074 |
. . 3
⊢
(∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 3 | | cau3.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | 3 | r19.29uz 15374 |
. . . . . 6
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 5 | 4 | ex 412 |
. . . . 5
⊢
(∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 6 | 5 | ralimdv 3155 |
. . . 4
⊢
(∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 7 | 3 | caubnd2 15381 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑧 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) |
| 8 | 6, 7 | syl6 35 |
. . 3
⊢
(∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∃𝑧 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧)) |
| 9 | | fzssuz 13587 |
. . . . . . . 8
⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) |
| 10 | 9, 3 | sseqtrri 4013 |
. . . . . . 7
⊢ (𝑀...𝑗) ⊆ 𝑍 |
| 11 | | ssralv 4032 |
. . . . . . 7
⊢ ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ)) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 13 | | fzfi 13995 |
. . . . . . . 8
⊢ (𝑀...𝑗) ∈ Fin |
| 14 | | fimaxre3 12193 |
. . . . . . . 8
⊢ (((𝑀...𝑗) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥) |
| 15 | 13, 14 | mpan 690 |
. . . . . . 7
⊢
(∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥) |
| 16 | | peano2re 11413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 17 | 16 | adantl 481 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ) |
| 18 | | ltp1 12086 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1)) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 < (𝑥 + 1)) |
| 20 | 16 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ) |
| 21 | | lelttr 11330 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) →
(((abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑥 < (𝑥 + 1)) → (abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 22 | 20, 21 | mpd3an3 1464 |
. . . . . . . . . . . . . 14
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑥 < (𝑥 + 1)) → (abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 23 | 19, 22 | mpan2d 694 |
. . . . . . . . . . . . 13
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹‘𝑘)) ≤ 𝑥 → (abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 24 | 23 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ →
((abs‘(𝐹‘𝑘)) ∈ ℝ →
((abs‘(𝐹‘𝑘)) ≤ 𝑥 → (abs‘(𝐹‘𝑘)) < (𝑥 + 1)))) |
| 25 | 24 | ralimdv 3155 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ →
(∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹‘𝑘)) ≤ 𝑥 → (abs‘(𝐹‘𝑘)) < (𝑥 + 1)))) |
| 26 | 25 | impcom 407 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹‘𝑘)) ≤ 𝑥 → (abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 27 | | ralim 3077 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(𝑀...𝑗)((abs‘(𝐹‘𝑘)) ≤ 𝑥 → (abs‘(𝐹‘𝑘)) < (𝑥 + 1)) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < (𝑥 + 1))) |
| 29 | | brralrspcev 5184 |
. . . . . . . . 9
⊢ (((𝑥 + 1) ∈ ℝ ∧
∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < (𝑥 + 1)) → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤) |
| 30 | 17, 28, 29 | syl6an 684 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤)) |
| 31 | 30 | rexlimdva 3142 |
. . . . . . 7
⊢
(∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤)) |
| 32 | 15, 31 | mpd 15 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤) |
| 33 | 12, 32 | syl 17 |
. . . . 5
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤) |
| 34 | | max1 13206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) |
| 35 | 34 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) |
| 36 | | simp3 1138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
(abs‘(𝐹‘𝑘)) ∈
ℝ) |
| 37 | | simp1 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) → 𝑤 ∈
ℝ) |
| 38 | | ifcl 4551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ) |
| 39 | 38 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ) |
| 40 | 39 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ) |
| 41 | | ltletr 11332 |
. . . . . . . . . . . . . . . . . 18
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹‘𝑘)) < 𝑤 ∧ 𝑤 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 42 | 36, 37, 40, 41 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
(((abs‘(𝐹‘𝑘)) < 𝑤 ∧ 𝑤 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 43 | 35, 42 | mpan2d 694 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
((abs‘(𝐹‘𝑘)) < 𝑤 → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 44 | | max2 13208 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) |
| 45 | 44 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) → 𝑧 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) |
| 46 | | simp2 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) → 𝑧 ∈
ℝ) |
| 47 | | ltletr 11332 |
. . . . . . . . . . . . . . . . . 18
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹‘𝑘)) < 𝑧 ∧ 𝑧 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 48 | 36, 46, 40, 47 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
(((abs‘(𝐹‘𝑘)) < 𝑧 ∧ 𝑧 ≤ if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 49 | 45, 48 | mpan2d 694 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
((abs‘(𝐹‘𝑘)) < 𝑧 → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 50 | 43, 49 | jaod 859 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧
(abs‘(𝐹‘𝑘)) ∈ ℝ) →
(((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 51 | 50 | 3expia 1121 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
((abs‘(𝐹‘𝑘)) ∈ ℝ →
(((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤)))) |
| 52 | 51 | ralimdv 3155 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → ∀𝑘 ∈ 𝑍 (((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤)))) |
| 53 | | ralim 3077 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
𝑍 (((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → (∀𝑘 ∈ 𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤))) |
| 54 | 52, 53 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∀𝑘 ∈ 𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤)))) |
| 55 | | brralrspcev 5184 |
. . . . . . . . . . . . . 14
⊢
((if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) |
| 56 | 55 | ex 412 |
. . . . . . . . . . . . 13
⊢ (if(𝑤 ≤ 𝑧, 𝑧, 𝑤) ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)) |
| 57 | 39, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < if(𝑤 ≤ 𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)) |
| 58 | 54, 57 | syl6d 75 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∀𝑘 ∈ 𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))) |
| 59 | | uzssz 12878 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 60 | 3, 59 | eqsstri 4010 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 ⊆
ℤ |
| 61 | 60 | sseli 3959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 62 | 60 | sseli 3959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 63 | | uztric 12881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈
(ℤ≥‘𝑘) ∨ 𝑘 ∈ (ℤ≥‘𝑗))) |
| 64 | 61, 62, 63 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑘) ∨ 𝑘 ∈ (ℤ≥‘𝑗))) |
| 65 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
| 66 | 65, 3 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 67 | | elfzuzb 13540 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑗 ∈ (ℤ≥‘𝑘))) |
| 68 | 67 | baib 535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ≥‘𝑘))) |
| 69 | 66, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ≥‘𝑘))) |
| 70 | 69 | orbi1d 916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ≥‘𝑗)) ↔ (𝑗 ∈ (ℤ≥‘𝑘) ∨ 𝑘 ∈ (ℤ≥‘𝑗)))) |
| 71 | 64, 70 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ≥‘𝑗))) |
| 72 | 71 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ≥‘𝑗)))) |
| 73 | | pm3.48 965 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧)) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 74 | 72, 73 | syl9 77 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝑍 → (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧)) → (𝑘 ∈ 𝑍 → ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧)))) |
| 75 | 74 | alimdv 1916 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧)) → ∀𝑘(𝑘 ∈ 𝑍 → ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧)))) |
| 76 | | df-ral 3053 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ↔ ∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤)) |
| 77 | | df-ral 3053 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 ↔ ∀𝑘(𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧)) |
| 78 | 76, 77 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 79 | | 19.26 1870 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧)) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 80 | 78, 79 | bitr4i 278 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑘 ∈
(𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) ↔ ∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹‘𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ≥‘𝑗) → (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 81 | | df-ral 3053 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) ↔ ∀𝑘(𝑘 ∈ 𝑍 → ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 82 | 75, 80, 81 | 3imtr4g 296 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑍 → ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) → ∀𝑘 ∈ 𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧))) |
| 83 | 82 | 3impib 1116 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) → ∀𝑘 ∈ 𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧)) |
| 84 | 83 | imim1i 63 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) → ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)) |
| 85 | 84 | 3expd 1354 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
𝑍 ((abs‘(𝐹‘𝑘)) < 𝑤 ∨ (abs‘(𝐹‘𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)))) |
| 86 | 58, 85 | syl6 35 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))))) |
| 87 | 86 | com23 86 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))))) |
| 88 | 87 | expimpd 453 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))))) |
| 89 | 88 | com3r 87 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))))) |
| 90 | 89 | com34 91 |
. . . . . 6
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))))) |
| 91 | 90 | rexlimdv 3140 |
. . . . 5
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹‘𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)))) |
| 92 | 33, 91 | mpd 15 |
. . . 4
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦))) |
| 93 | 92 | rexlimdvv 3201 |
. . 3
⊢
(∀𝑘 ∈
𝑍 (abs‘(𝐹‘𝑘)) ∈ ℝ → (∃𝑧 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)) |
| 94 | 2, 8, 93 | sylsyld 61 |
. 2
⊢
(∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦)) |
| 95 | 94 | imp 406 |
1
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) |