MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd Structured version   Visualization version   GIF version

Theorem caubnd 14998
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 14918 . . . 4 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
21ralimi 3086 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ)
3 cau3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
43r19.29uz 14990 . . . . . 6 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
54ex 412 . . . . 5 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
65ralimdv 3103 . . . 4 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
73caubnd2 14997 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧)
86, 7syl6 35 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧))
9 fzssuz 13226 . . . . . . . 8 (𝑀...𝑗) ⊆ (ℤ𝑀)
109, 3sseqtrri 3954 . . . . . . 7 (𝑀...𝑗) ⊆ 𝑍
11 ssralv 3983 . . . . . . 7 ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ))
1210, 11ax-mp 5 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ)
13 fzfi 13620 . . . . . . . 8 (𝑀...𝑗) ∈ Fin
14 fimaxre3 11851 . . . . . . . 8 (((𝑀...𝑗) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
1513, 14mpan 686 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
16 peano2re 11078 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1716adantl 481 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
18 ltp1 11745 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
1918adantl 481 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 < (𝑥 + 1))
2016adantl 481 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
21 lelttr 10996 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2220, 21mpd3an3 1460 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2319, 22mpan2d 690 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2423expcom 413 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑘)) ∈ ℝ → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2524ralimdv 3103 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2625impcom 407 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
27 ralim 3082 . . . . . . . . . 10 (∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
2826, 27syl 17 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
29 brralrspcev 5130 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)) → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3017, 28, 29syl6an 680 . . . . . . . 8 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3130rexlimdva 3212 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3215, 31mpd 15 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3312, 32syl 17 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
34 max1 12848 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
35343adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
36 simp3 1136 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (abs‘(𝐹𝑘)) ∈ ℝ)
37 simp1 1134 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ∈ ℝ)
38 ifcl 4501 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
3938ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
40393adant3 1130 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
41 ltletr 10997 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4236, 37, 40, 41syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4335, 42mpan2d 690 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑤 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
44 max2 12850 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
45443adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
46 simp2 1135 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ∈ ℝ)
47 ltletr 10997 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4836, 46, 40, 47syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4945, 48mpan2d 690 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑧 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5043, 49jaod 855 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
51503expia 1119 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ ℝ → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
5251ralimdv 3103 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
53 ralim 3082 . . . . . . . . . . . . 13 (∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5452, 53syl6 35 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
55 brralrspcev 5130 . . . . . . . . . . . . . 14 ((if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
5655ex 412 . . . . . . . . . . . . 13 (if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5739, 56syl 17 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5854, 57syl6d 75 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
59 uzssz 12532 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ𝑀) ⊆ ℤ
603, 59eqsstri 3951 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℤ
6160sseli 3913 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
6260sseli 3913 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝑍𝑗 ∈ ℤ)
63 uztric 12535 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
6461, 62, 63syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
65 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗𝑍𝑘𝑍) → 𝑘𝑍)
6665, 3eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
67 elfzuzb 13179 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
6867baib 535 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
7069orbi1d 913 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) ↔ (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗))))
7164, 70mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)))
7271ex 412 . . . . . . . . . . . . . . . . 17 (𝑗𝑍 → (𝑘𝑍 → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗))))
73 pm3.48 960 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
7472, 73syl9 77 . . . . . . . . . . . . . . . 16 (𝑗𝑍 → (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → (𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
7574alimdv 1920 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
76 df-ral 3068 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ↔ ∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤))
77 df-ral 3068 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 ↔ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧))
7876, 77anbi12i 626 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
79 19.26 1874 . . . . . . . . . . . . . . . 16 (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
8078, 79bitr4i 277 . . . . . . . . . . . . . . 15 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
81 df-ral 3068 . . . . . . . . . . . . . . 15 (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
8275, 80, 813imtr4g 295 . . . . . . . . . . . . . 14 (𝑗𝑍 → ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
83823impib 1114 . . . . . . . . . . . . 13 ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))
8483imim1i 63 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
85843expd 1351 . . . . . . . . . . 11 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
8658, 85syl6 35 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8786com23 86 . . . . . . . . 9 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑗𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8887expimpd 453 . . . . . . . 8 (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8988com3r 87 . . . . . . 7 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9089com34 91 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9190rexlimdv 3211 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
9233, 91mpd 15 . . . 4 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
9392rexlimdvv 3221 . . 3 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
942, 8, 93sylsyld 61 . 2 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
9594imp 406 1 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  climbdd  15311
  Copyright terms: Public domain W3C validator