MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd Structured version   Visualization version   GIF version

Theorem caubnd 15407
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 15327 . . . 4 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
21ralimi 3089 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ)
3 cau3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
43r19.29uz 15399 . . . . . 6 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
54ex 412 . . . . 5 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
65ralimdv 3175 . . . 4 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
73caubnd2 15406 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧)
86, 7syl6 35 . . 3 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧))
9 fzssuz 13625 . . . . . . . 8 (𝑀...𝑗) ⊆ (ℤ𝑀)
109, 3sseqtrri 4046 . . . . . . 7 (𝑀...𝑗) ⊆ 𝑍
11 ssralv 4077 . . . . . . 7 ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ))
1210, 11ax-mp 5 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ)
13 fzfi 14023 . . . . . . . 8 (𝑀...𝑗) ∈ Fin
14 fimaxre3 12241 . . . . . . . 8 (((𝑀...𝑗) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
1513, 14mpan 689 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥)
16 peano2re 11463 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1716adantl 481 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
18 ltp1 12134 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
1918adantl 481 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 < (𝑥 + 1))
2016adantl 481 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
21 lelttr 11380 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2220, 21mpd3an3 1462 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘(𝐹𝑘)) ≤ 𝑥𝑥 < (𝑥 + 1)) → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2319, 22mpan2d 693 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
2423expcom 413 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑘)) ∈ ℝ → ((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2524ralimdv 3175 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1))))
2625impcom 407 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)))
27 ralim 3092 . . . . . . . . . 10 (∀𝑘 ∈ (𝑀...𝑗)((abs‘(𝐹𝑘)) ≤ 𝑥 → (abs‘(𝐹𝑘)) < (𝑥 + 1)) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
2826, 27syl 17 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)))
29 brralrspcev 5226 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < (𝑥 + 1)) → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3017, 28, 29syl6an 683 . . . . . . . 8 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3130rexlimdva 3161 . . . . . . 7 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤))
3215, 31mpd 15 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
3312, 32syl 17 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤)
34 max1 13247 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
35343adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤))
36 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (abs‘(𝐹𝑘)) ∈ ℝ)
37 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑤 ∈ ℝ)
38 ifcl 4593 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
3938ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
40393adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ)
41 ltletr 11382 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4236, 37, 40, 41syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤𝑤 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4335, 42mpan2d 693 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑤 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
44 max2 13249 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
45443adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤))
46 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → 𝑧 ∈ ℝ)
47 ltletr 11382 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4836, 46, 40, 47syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑧𝑧 ≤ if(𝑤𝑧, 𝑧, 𝑤)) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
4945, 48mpan2d 693 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑧 → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5043, 49jaod 858 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
51503expia 1121 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ ℝ → (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
5251ralimdv 3175 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
53 ralim 3092 . . . . . . . . . . . . 13 (∀𝑘𝑍 (((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)))
5452, 53syl6 35 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤))))
55 brralrspcev 5226 . . . . . . . . . . . . . 14 ((if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
5655ex 412 . . . . . . . . . . . . 13 (if(𝑤𝑧, 𝑧, 𝑤) ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5739, 56syl 17 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < if(𝑤𝑧, 𝑧, 𝑤) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
5854, 57syl6d 75 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
59 uzssz 12924 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ𝑀) ⊆ ℤ
603, 59eqsstri 4043 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℤ
6160sseli 4004 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
6260sseli 4004 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝑍𝑗 ∈ ℤ)
63 uztric 12927 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
6461, 62, 63syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗)))
65 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗𝑍𝑘𝑍) → 𝑘𝑍)
6665, 3eleqtrdi 2854 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
67 elfzuzb 13578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
6867baib 535 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ↔ 𝑗 ∈ (ℤ𝑘)))
7069orbi1d 915 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) ↔ (𝑗 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑗))))
7164, 70mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)))
7271ex 412 . . . . . . . . . . . . . . . . 17 (𝑗𝑍 → (𝑘𝑍 → (𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗))))
73 pm3.48 964 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ((𝑘 ∈ (𝑀...𝑗) ∨ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
7472, 73syl9 77 . . . . . . . . . . . . . . . 16 (𝑗𝑍 → (((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → (𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
7574alimdv 1915 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) → ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))))
76 df-ral 3068 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ↔ ∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤))
77 df-ral 3068 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 ↔ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧))
7876, 77anbi12i 627 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
79 19.26 1869 . . . . . . . . . . . . . . . 16 (∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)) ↔ (∀𝑘(𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ ∀𝑘(𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
8078, 79bitr4i 278 . . . . . . . . . . . . . . 15 ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘((𝑘 ∈ (𝑀...𝑗) → (abs‘(𝐹𝑘)) < 𝑤) ∧ (𝑘 ∈ (ℤ𝑗) → (abs‘(𝐹𝑘)) < 𝑧)))
81 df-ral 3068 . . . . . . . . . . . . . . 15 (∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) ↔ ∀𝑘(𝑘𝑍 → ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
8275, 80, 813imtr4g 296 . . . . . . . . . . . . . 14 (𝑗𝑍 → ((∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧)))
83823impib 1116 . . . . . . . . . . . . 13 ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧))
8483imim1i 63 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → ((𝑗𝑍 ∧ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
85843expd 1353 . . . . . . . . . . 11 ((∀𝑘𝑍 ((abs‘(𝐹𝑘)) < 𝑤 ∨ (abs‘(𝐹𝑘)) < 𝑧) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦) → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
8658, 85syl6 35 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑗𝑍 → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8786com23 86 . . . . . . . . 9 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑗𝑍 → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8887expimpd 453 . . . . . . . 8 (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
8988com3r 87 . . . . . . 7 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9089com34 91 . . . . . 6 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (𝑤 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))))
9190rexlimdv 3159 . . . . 5 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑤 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑗)(abs‘(𝐹𝑘)) < 𝑤 → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))))
9233, 91mpd 15 . . . 4 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → ((𝑧 ∈ ℝ ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)))
9392rexlimdvv 3218 . . 3 (∀𝑘𝑍 (abs‘(𝐹𝑘)) ∈ ℝ → (∃𝑧 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑧 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
942, 8, 93sylsyld 61 . 2 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦))
9594imp 406 1 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  climbdd  15720
  Copyright terms: Public domain W3C validator