|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.64 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.64 | ⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-or 849 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 849 | 
| This theorem is referenced by: pm4.66 851 ioran 986 dfifp3 1066 fimaxg 9323 fiming 9538 kmlem8 10198 axgroth6 10868 dfconn2 23427 ifpimimb 43517 ifpor123g 43521 hirstL-ax3 46904 | 
| Copyright terms: Public domain | W3C validator |