MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.64 Structured version   Visualization version   GIF version

Theorem pm4.64 850
Description: Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.64 ((¬ 𝜑𝜓) ↔ (𝜑𝜓))

Proof of Theorem pm4.64
StepHypRef Expression
1 df-or 849 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21bicomi 224 1 ((¬ 𝜑𝜓) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 849
This theorem is referenced by:  pm4.66  851  ioran  986  dfifp3  1066  fimaxg  9323  fiming  9538  kmlem8  10198  axgroth6  10868  dfconn2  23427  ifpimimb  43517  ifpor123g  43521  hirstL-ax3  46904
  Copyright terms: Public domain W3C validator