Proof of Theorem dfconn2
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | | simpll 763 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝐽 ∈ Conn) |
3 | | simplrl 773 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ∈ 𝐽) |
4 | | simpr1 1192 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ≠ ∅) |
5 | | simplrr 774 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑦 ∈ 𝐽) |
6 | | simpr2 1193 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑦 ≠ ∅) |
7 | | simpr3 1194 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∩ 𝑦) = ∅) |
8 | 1, 2, 3, 4, 5, 6, 7 | conndisj 22475 |
. . . . 5
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) |
9 | 8 | ex 412 |
. . . 4
⊢ ((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
10 | 9 | ralrimivva 3114 |
. . 3
⊢ (𝐽 ∈ Conn →
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
11 | | topontop 21970 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
12 | 1 | cldopn 22090 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ 𝑥) ∈ 𝐽) |
13 | 12 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
∖ 𝑥) ∈ 𝐽) |
14 | | df-3an 1087 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅)) |
15 | | ineq2 4137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∩ 𝑦) = (𝑥 ∩ (∪ 𝐽 ∖ 𝑥))) |
16 | | disjdif 4402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∩ (∪ 𝐽
∖ 𝑥)) =
∅ |
17 | 15, 16 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∩ 𝑦) = ∅) |
18 | 17 | biantrud 531 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅))) |
19 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑦 ≠ ∅ ↔ (∪ 𝐽
∖ 𝑥) ≠
∅)) |
20 | 19 | anbi2d 628 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
21 | 18, 20 | bitr3d 280 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
22 | 14, 21 | syl5bb 282 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
23 | | uneq2 4087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∪ 𝑦) = (𝑥 ∪ (∪ 𝐽 ∖ 𝑥))) |
24 | | undif2 4407 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∪ (∪ 𝐽
∖ 𝑥)) = (𝑥 ∪ ∪ 𝐽) |
25 | 23, 24 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∪ 𝑦) = (𝑥 ∪ ∪ 𝐽)) |
26 | 25 | neeq1d 3002 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ∪ 𝑦) ≠ ∪ 𝐽 ↔ (𝑥 ∪ ∪ 𝐽) ≠ ∪ 𝐽)) |
27 | 22, 26 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) ↔ ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
28 | 27 | rspcv 3547 |
. . . . . . . . . . . . 13
⊢ ((∪ 𝐽
∖ 𝑥) ∈ 𝐽 → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
29 | 13, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
30 | 1 | cldss 22088 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
32 | | ssequn1 4110 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ ∪ 𝐽
↔ (𝑥 ∪ ∪ 𝐽) =
∪ 𝐽) |
33 | 31, 32 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑥 ∪ ∪ 𝐽) = ∪
𝐽) |
34 | | ssdif0 4294 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝐽
⊆ 𝑥 ↔ (∪ 𝐽
∖ 𝑥) =
∅) |
35 | | idd 24 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → ∪ 𝐽
⊆ 𝑥)) |
36 | 35, 31 | jctild 525 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → (𝑥 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ 𝑥))) |
37 | | eqss 3932 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∪
𝐽 ↔ (𝑥 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ 𝑥)) |
38 | 36, 37 | syl6ibr 251 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → 𝑥 = ∪
𝐽)) |
39 | 34, 38 | syl5bir 242 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((∪ 𝐽
∖ 𝑥) = ∅ →
𝑥 = ∪ 𝐽)) |
40 | 33, 39 | embantd 59 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) = ∅)
→ 𝑥 = ∪ 𝐽)) |
41 | 40 | orim2d 963 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) = ∅))
→ (𝑥 = ∅ ∨
𝑥 = ∪ 𝐽))) |
42 | | impexp 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ (𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
43 | | df-ne 2943 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
44 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → ((∪
𝐽 ∖ 𝑥) ≠ ∅ → (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) |
45 | 44 | necon4d 2966 |
. . . . . . . . . . . . . . . . 17
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
46 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅) → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
47 | 46 | necon3d 2963 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅) → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) |
48 | 45, 47 | impbii 208 |
. . . . . . . . . . . . . . . 16
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
49 | 43, 48 | imbi12i 350 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) ↔ (¬ 𝑥 = ∅ → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
50 | | pm4.64 845 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑥 = ∅ → ((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅)) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
51 | 49, 50 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
52 | 42, 51 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
53 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
54 | 53 | elpr 4581 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {∅, ∪ 𝐽}
↔ (𝑥 = ∅ ∨
𝑥 = ∪ 𝐽)) |
55 | 41, 52, 54 | 3imtr4g 295 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})) |
56 | 29, 55 | syld 47 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})) |
57 | 56 | ex 412 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
58 | 57 | com23 86 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
59 | 58 | imim2d 57 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})))) |
60 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) |
61 | 60 | imbi1i 349 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ ((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})) |
62 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
63 | 61, 62 | bitri 274 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
64 | 59, 63 | syl6ibr 251 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → (𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
65 | 64 | alimdv 1920 |
. . . . . 6
⊢ (𝐽 ∈ Top →
(∀𝑥(𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → ∀𝑥(𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
66 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) ↔ ∀𝑥(𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
67 | | dfss2 3903 |
. . . . . 6
⊢ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽}
↔ ∀𝑥(𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})) |
68 | 65, 66, 67 | 3imtr4g 295 |
. . . . 5
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
69 | 1 | isconn2 22473 |
. . . . . 6
⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
70 | 69 | baib 535 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝐽 ∈ Conn ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
71 | 68, 70 | sylibrd 258 |
. . . 4
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝐽 ∈ Conn)) |
72 | 11, 71 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝐽 ∈ Conn)) |
73 | 10, 72 | impbid2 225 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
74 | | toponuni 21971 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
75 | 74 | neeq2d 3003 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∪ 𝑦) ≠ 𝑋 ↔ (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
76 | 75 | imbi2d 340 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
77 | 76 | 2ralbidv 3122 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
78 | 73, 77 | bitr4d 281 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) |