Proof of Theorem dfconn2
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | | simpll 766 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝐽 ∈ Conn) |
| 3 | | simplrl 776 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ∈ 𝐽) |
| 4 | | simpr1 1195 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ≠ ∅) |
| 5 | | simplrr 777 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑦 ∈ 𝐽) |
| 6 | | simpr2 1196 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑦 ≠ ∅) |
| 7 | | simpr3 1197 |
. . . . . 6
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∩ 𝑦) = ∅) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | conndisj 23359 |
. . . . 5
⊢ (((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) |
| 9 | 8 | ex 412 |
. . . 4
⊢ ((𝐽 ∈ Conn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 10 | 9 | ralrimivva 3188 |
. . 3
⊢ (𝐽 ∈ Conn →
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 11 | | topontop 22856 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 12 | 1 | cldopn 22974 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ 𝑥) ∈ 𝐽) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
∖ 𝑥) ∈ 𝐽) |
| 14 | | df-3an 1088 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 15 | | ineq2 4194 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∩ 𝑦) = (𝑥 ∩ (∪ 𝐽 ∖ 𝑥))) |
| 16 | | disjdif 4452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∩ (∪ 𝐽
∖ 𝑥)) =
∅ |
| 17 | 15, 16 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∩ 𝑦) = ∅) |
| 18 | 17 | biantrud 531 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅))) |
| 19 | | neeq1 2995 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑦 ≠ ∅ ↔ (∪ 𝐽
∖ 𝑥) ≠
∅)) |
| 20 | 19 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
| 21 | 18, 20 | bitr3d 281 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
| 22 | 14, 21 | bitrid 283 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠
∅))) |
| 23 | | uneq2 4142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∪ 𝑦) = (𝑥 ∪ (∪ 𝐽 ∖ 𝑥))) |
| 24 | | undif2 4457 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∪ (∪ 𝐽
∖ 𝑥)) = (𝑥 ∪ ∪ 𝐽) |
| 25 | 23, 24 | eqtrdi 2787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (𝑥 ∪ 𝑦) = (𝑥 ∪ ∪ 𝐽)) |
| 26 | 25 | neeq1d 2992 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → ((𝑥 ∪ 𝑦) ≠ ∪ 𝐽 ↔ (𝑥 ∪ ∪ 𝐽) ≠ ∪ 𝐽)) |
| 27 | 22, 26 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (∪
𝐽 ∖ 𝑥) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) ↔ ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
| 28 | 27 | rspcv 3602 |
. . . . . . . . . . . . 13
⊢ ((∪ 𝐽
∖ 𝑥) ∈ 𝐽 → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
| 29 | 13, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → ((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
| 30 | 1 | cldss 22972 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
| 32 | | ssequn1 4166 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ ∪ 𝐽
↔ (𝑥 ∪ ∪ 𝐽) =
∪ 𝐽) |
| 33 | 31, 32 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑥 ∪ ∪ 𝐽) = ∪
𝐽) |
| 34 | | ssdif0 4346 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝐽
⊆ 𝑥 ↔ (∪ 𝐽
∖ 𝑥) =
∅) |
| 35 | | idd 24 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → ∪ 𝐽
⊆ 𝑥)) |
| 36 | 35, 31 | jctild 525 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → (𝑥 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ 𝑥))) |
| 37 | | eqss 3979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∪
𝐽 ↔ (𝑥 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ 𝑥)) |
| 38 | 36, 37 | imbitrrdi 252 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽
⊆ 𝑥 → 𝑥 = ∪
𝐽)) |
| 39 | 34, 38 | biimtrrid 243 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((∪ 𝐽
∖ 𝑥) = ∅ →
𝑥 = ∪ 𝐽)) |
| 40 | 33, 39 | embantd 59 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) = ∅)
→ 𝑥 = ∪ 𝐽)) |
| 41 | 40 | orim2d 968 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) = ∅))
→ (𝑥 = ∅ ∨
𝑥 = ∪ 𝐽))) |
| 42 | | impexp 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ (𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽))) |
| 43 | | df-ne 2934 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
| 44 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → ((∪
𝐽 ∖ 𝑥) ≠ ∅ → (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) |
| 45 | 44 | necon4d 2957 |
. . . . . . . . . . . . . . . . 17
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
| 46 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅) → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
| 47 | 46 | necon3d 2954 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅) → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) |
| 48 | 45, 47 | impbii 209 |
. . . . . . . . . . . . . . . 16
⊢ (((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅)) |
| 49 | 43, 48 | imbi12i 350 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) ↔ (¬ 𝑥 = ∅ → ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
| 50 | | pm4.64 849 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑥 = ∅ → ((𝑥 ∪ ∪ 𝐽) =
∪ 𝐽 → (∪ 𝐽 ∖ 𝑥) = ∅)) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
| 51 | 49, 50 | bitri 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ≠ ∅ → ((∪ 𝐽
∖ 𝑥) ≠ ∅
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽)) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
| 52 | 42, 51 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) ↔ (𝑥 = ∅ ∨ ((𝑥 ∪ ∪ 𝐽) = ∪
𝐽 → (∪ 𝐽
∖ 𝑥) =
∅))) |
| 53 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
| 54 | 53 | elpr 4631 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {∅, ∪ 𝐽}
↔ (𝑥 = ∅ ∨
𝑥 = ∪ 𝐽)) |
| 55 | 41, 52, 54 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((𝑥 ≠ ∅ ∧ (∪ 𝐽
∖ 𝑥) ≠ ∅)
→ (𝑥 ∪ ∪ 𝐽)
≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})) |
| 56 | 29, 55 | syld 47 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})) |
| 57 | 56 | ex 412 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → (∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 58 | 57 | com23 86 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 59 | 58 | imim2d 57 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽})))) |
| 60 | | elin 3947 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) |
| 61 | 60 | imbi1i 349 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ ((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})) |
| 62 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 63 | 61, 62 | bitri 275 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})
↔ (𝑥 ∈ 𝐽 → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 64 | 59, 63 | imbitrrdi 252 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → (𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 65 | 64 | alimdv 1916 |
. . . . . 6
⊢ (𝐽 ∈ Top →
(∀𝑥(𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) → ∀𝑥(𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽}))) |
| 66 | | df-ral 3053 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) ↔ ∀𝑥(𝑥 ∈ 𝐽 → ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 67 | | df-ss 3948 |
. . . . . 6
⊢ ((𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽}
↔ ∀𝑥(𝑥 ∈ (𝐽 ∩ (Clsd‘𝐽)) → 𝑥 ∈ {∅, ∪ 𝐽})) |
| 68 | 65, 66, 67 | 3imtr4g 296 |
. . . . 5
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
| 69 | 1 | isconn2 23357 |
. . . . . 6
⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
| 70 | 69 | baib 535 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝐽 ∈ Conn ↔ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, ∪ 𝐽})) |
| 71 | 68, 70 | sylibrd 259 |
. . . 4
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝐽 ∈ Conn)) |
| 72 | 11, 71 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) → 𝐽 ∈ Conn)) |
| 73 | 10, 72 | impbid2 226 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 74 | | toponuni 22857 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 75 | 74 | neeq2d 2993 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∪ 𝑦) ≠ 𝑋 ↔ (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 76 | 75 | imbi2d 340 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 77 | 76 | 2ralbidv 3209 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 78 | 73, 77 | bitr4d 282 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) |