MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem8 Structured version   Visualization version   GIF version

Theorem kmlem8 9913
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.)
Assertion
Ref Expression
kmlem8 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Distinct variable group:   𝑦,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑦,𝑧,𝑤,𝑢)

Proof of Theorem kmlem8
StepHypRef Expression
1 ralnex 3167 . . . . 5 (∀𝑧𝑢 ¬ ∀𝑤𝑧 𝜓 ↔ ¬ ∃𝑧𝑢𝑤𝑧 𝜓)
2 df-rex 3070 . . . . . . . 8 (∃𝑤𝑧 ¬ 𝜓 ↔ ∃𝑤(𝑤𝑧 ∧ ¬ 𝜓))
3 rexnal 3169 . . . . . . . 8 (∃𝑤𝑧 ¬ 𝜓 ↔ ¬ ∀𝑤𝑧 𝜓)
42, 3bitr3i 276 . . . . . . 7 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) ↔ ¬ ∀𝑤𝑧 𝜓)
5 exsimpl 1871 . . . . . . . 8 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) → ∃𝑤 𝑤𝑧)
6 n0 4280 . . . . . . . 8 (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧)
75, 6sylibr 233 . . . . . . 7 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) → 𝑧 ≠ ∅)
84, 7sylbir 234 . . . . . 6 (¬ ∀𝑤𝑧 𝜓𝑧 ≠ ∅)
98ralimi 3087 . . . . 5 (∀𝑧𝑢 ¬ ∀𝑤𝑧 𝜓 → ∀𝑧𝑢 𝑧 ≠ ∅)
101, 9sylbir 234 . . . 4 (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∀𝑧𝑢 𝑧 ≠ ∅)
11 kmlem2 9907 . . . . 5 (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
12 biimt 361 . . . . . . . . 9 (𝑧 ≠ ∅ → (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1312ralimi 3087 . . . . . . . 8 (∀𝑧𝑢 𝑧 ≠ ∅ → ∀𝑧𝑢 (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
14 ralbi 3089 . . . . . . . 8 (∀𝑧𝑢 (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) → (∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1513, 14syl 17 . . . . . . 7 (∀𝑧𝑢 𝑧 ≠ ∅ → (∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1615anbi2d 629 . . . . . 6 (∀𝑧𝑢 𝑧 ≠ ∅ → ((¬ 𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ (¬ 𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))))
1716exbidv 1924 . . . . 5 (∀𝑧𝑢 𝑧 ≠ ∅ → (∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))))
1811, 17bitr4id 290 . . . 4 (∀𝑧𝑢 𝑧 ≠ ∅ → (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1910, 18syl 17 . . 3 (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
2019pm5.74i 270 . 2 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
21 pm4.64 846 . 2 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
2220, 21bitri 274 1 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wex 1782  wcel 2106  ∃!weu 2568  wne 2943  wral 3064  wrex 3065  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840
This theorem is referenced by:  dfackm  9922
  Copyright terms: Public domain W3C validator