Proof of Theorem ifpimimb
Step | Hyp | Ref
| Expression |
1 | | dfifp2 1061 |
. 2
⊢
(if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ ((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏)))) |
2 | | imor 849 |
. . . 4
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (¬ 𝜑 ∨ (𝜓 → 𝜒))) |
3 | | pm4.8 392 |
. . . . . 6
⊢ ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑) |
4 | 3 | bicomi 223 |
. . . . 5
⊢ (¬
𝜑 ↔ (𝜑 → ¬ 𝜑)) |
5 | 4 | orbi1i 910 |
. . . 4
⊢ ((¬
𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒))) |
6 | | id 22 |
. . . . . 6
⊢ (𝜑 → 𝜑) |
7 | 6 | orci 861 |
. . . . 5
⊢ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒)) |
8 | 7 | biantru 529 |
. . . 4
⊢ (((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒)) ↔ (((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒)) ∧ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒)))) |
9 | 2, 5, 8 | 3bitri 296 |
. . 3
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒)) ∧ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒)))) |
10 | | pm4.64 845 |
. . . 4
⊢ ((¬
𝜑 → (𝜃 → 𝜏)) ↔ (𝜑 ∨ (𝜃 → 𝜏))) |
11 | | pm4.81 393 |
. . . . . 6
⊢ ((¬
𝜑 → 𝜑) ↔ 𝜑) |
12 | 11 | bicomi 223 |
. . . . 5
⊢ (𝜑 ↔ (¬ 𝜑 → 𝜑)) |
13 | 12 | orbi1i 910 |
. . . 4
⊢ ((𝜑 ∨ (𝜃 → 𝜏)) ↔ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏))) |
14 | 6 | orci 861 |
. . . . 5
⊢ ((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) |
15 | 14 | biantrur 530 |
. . . 4
⊢ (((¬
𝜑 → 𝜑) ∨ (𝜃 → 𝜏)) ↔ (((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) ∧ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏)))) |
16 | 10, 13, 15 | 3bitri 296 |
. . 3
⊢ ((¬
𝜑 → (𝜃 → 𝜏)) ↔ (((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) ∧ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏)))) |
17 | 9, 16 | anbi12i 626 |
. 2
⊢ (((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ↔ ((((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒)) ∧ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒))) ∧ (((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) ∧ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏))))) |
18 | | ifpim123g 41069 |
. . 3
⊢
((if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)) ↔ ((((𝜑 → ¬ 𝜑) ∨ (𝜓 → 𝜒)) ∧ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒))) ∧ (((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) ∧ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏))))) |
19 | 18 | bicomi 223 |
. 2
⊢
(((((𝜑 → ¬
𝜑) ∨ (𝜓 → 𝜒)) ∧ ((𝜑 → 𝜑) ∨ (𝜃 → 𝜒))) ∧ (((𝜑 → 𝜑) ∨ (𝜓 → 𝜏)) ∧ ((¬ 𝜑 → 𝜑) ∨ (𝜃 → 𝜏)))) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) |
20 | 1, 17, 19 | 3bitri 296 |
1
⊢
(if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) |