| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfifp3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.) |
| Ref | Expression |
|---|---|
| dfifp3 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfifp2 1065 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
| 2 | pm4.64 850 | . . 3 ⊢ ((¬ 𝜑 → 𝜒) ↔ (𝜑 ∨ 𝜒)) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: dfifp4 1067 ifpn 1074 ifptru 1075 ifpbi123d 1079 wl-2mintru1 37491 |
| Copyright terms: Public domain | W3C validator |