MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Visualization version   GIF version

Theorem axgroth6 10248
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axgroth6
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10244 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
2 biid 264 . . . 4 (𝑥𝑦𝑥𝑦)
3 pweq 4538 . . . . . . . . 9 (𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣)
43sseq1d 3984 . . . . . . . 8 (𝑧 = 𝑣 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑣𝑦))
54cbvralvw 3434 . . . . . . 7 (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑣𝑦 𝒫 𝑣𝑦)
6 ssid 3975 . . . . . . . . . 10 𝒫 𝑧 ⊆ 𝒫 𝑧
7 sseq2 3979 . . . . . . . . . . 11 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
87rspcev 3609 . . . . . . . . . 10 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑦 𝒫 𝑧𝑤)
96, 8mpan2 690 . . . . . . . . 9 (𝒫 𝑧𝑦 → ∃𝑤𝑦 𝒫 𝑧𝑤)
10 pweq 4538 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤)
1110sseq1d 3984 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝒫 𝑣𝑦 ↔ 𝒫 𝑤𝑦))
1211rspccv 3606 . . . . . . . . . . 11 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → 𝒫 𝑤𝑦))
13 pwss 4547 . . . . . . . . . . . 12 (𝒫 𝑤𝑦 ↔ ∀𝑣(𝑣𝑤𝑣𝑦))
14 vpwex 5265 . . . . . . . . . . . . 13 𝒫 𝑧 ∈ V
15 sseq1 3978 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑤 ↔ 𝒫 𝑧𝑤))
16 eleq1 2903 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑦 ↔ 𝒫 𝑧𝑦))
1715, 16imbi12d 348 . . . . . . . . . . . . 13 (𝑣 = 𝒫 𝑧 → ((𝑣𝑤𝑣𝑦) ↔ (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
1814, 17spcv 3592 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑤𝑣𝑦) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
1913, 18sylbi 220 . . . . . . . . . . 11 (𝒫 𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
2012, 19syl6 35 . . . . . . . . . 10 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
2120rexlimdv 3275 . . . . . . . . 9 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∃𝑤𝑦 𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
229, 21impbid2 229 . . . . . . . 8 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝒫 𝑧𝑦 ↔ ∃𝑤𝑦 𝒫 𝑧𝑤))
2322ralbidv 3192 . . . . . . 7 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
245, 23sylbi 220 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2524pm5.32i 578 . . . . 5 ((∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
26 r19.26 3165 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
27 r19.26 3165 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2825, 26, 273bitr4i 306 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤))
29 velpw 4527 . . . . . 6 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
30 impexp 454 . . . . . . . . 9 (((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
31 ssdomg 8551 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
3231elv 3485 . . . . . . . . . . 11 (𝑧𝑦𝑧𝑦)
3332pm4.71i 563 . . . . . . . . . 10 (𝑧𝑦 ↔ (𝑧𝑦𝑧𝑦))
3433imbi1i 353 . . . . . . . . 9 ((𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)) ↔ ((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)))
35 brsdom 8528 . . . . . . . . . . . 12 (𝑧𝑦 ↔ (𝑧𝑦 ∧ ¬ 𝑧𝑦))
3635imbi1i 353 . . . . . . . . . . 11 ((𝑧𝑦𝑧𝑦) ↔ ((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦))
37 impexp 454 . . . . . . . . . . 11 (((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3836, 37bitri 278 . . . . . . . . . 10 ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3938imbi2i 339 . . . . . . . . 9 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
4030, 34, 393bitr4ri 307 . . . . . . . 8 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
4140pm5.74ri 275 . . . . . . 7 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (¬ 𝑧𝑦𝑧𝑦)))
42 pm4.64 846 . . . . . . 7 ((¬ 𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦))
4341, 42syl6bb 290 . . . . . 6 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4429, 43sylbi 220 . . . . 5 (𝑧 ∈ 𝒫 𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4544ralbiia 3159 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
462, 28, 453anbi123i 1152 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
4746exbii 1849 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
481, 47mpbir 234 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2115  wral 3133  wrex 3134  Vcvv 3480  wss 3919  𝒫 cpw 4522   class class class wbr 5052  cen 8502  cdom 8503  csdm 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-groth 10243
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-dom 8507  df-sdom 8508
This theorem is referenced by:  grothomex  10249  grothac  10250
  Copyright terms: Public domain W3C validator