MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Visualization version   GIF version

Theorem axgroth6 9972
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axgroth6
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9968 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
2 biid 253 . . . 4 (𝑥𝑦𝑥𝑦)
3 pweq 4383 . . . . . . . . 9 (𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣)
43sseq1d 3857 . . . . . . . 8 (𝑧 = 𝑣 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑣𝑦))
54cbvralv 3383 . . . . . . 7 (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑣𝑦 𝒫 𝑣𝑦)
6 ssid 3848 . . . . . . . . . 10 𝒫 𝑧 ⊆ 𝒫 𝑧
7 sseq2 3852 . . . . . . . . . . 11 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
87rspcev 3526 . . . . . . . . . 10 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑦 𝒫 𝑧𝑤)
96, 8mpan2 682 . . . . . . . . 9 (𝒫 𝑧𝑦 → ∃𝑤𝑦 𝒫 𝑧𝑤)
10 pweq 4383 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤)
1110sseq1d 3857 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝒫 𝑣𝑦 ↔ 𝒫 𝑤𝑦))
1211rspccv 3523 . . . . . . . . . . 11 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → 𝒫 𝑤𝑦))
13 pwss 4397 . . . . . . . . . . . 12 (𝒫 𝑤𝑦 ↔ ∀𝑣(𝑣𝑤𝑣𝑦))
14 vpwex 5079 . . . . . . . . . . . . 13 𝒫 𝑧 ∈ V
15 sseq1 3851 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑤 ↔ 𝒫 𝑧𝑤))
16 eleq1 2894 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑦 ↔ 𝒫 𝑧𝑦))
1715, 16imbi12d 336 . . . . . . . . . . . . 13 (𝑣 = 𝒫 𝑧 → ((𝑣𝑤𝑣𝑦) ↔ (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
1814, 17spcv 3516 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑤𝑣𝑦) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
1913, 18sylbi 209 . . . . . . . . . . 11 (𝒫 𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
2012, 19syl6 35 . . . . . . . . . 10 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
2120rexlimdv 3239 . . . . . . . . 9 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∃𝑤𝑦 𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
229, 21impbid2 218 . . . . . . . 8 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝒫 𝑧𝑦 ↔ ∃𝑤𝑦 𝒫 𝑧𝑤))
2322ralbidv 3195 . . . . . . 7 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
245, 23sylbi 209 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2524pm5.32i 570 . . . . 5 ((∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
26 r19.26 3274 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
27 r19.26 3274 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2825, 26, 273bitr4i 295 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤))
29 selpw 4387 . . . . . 6 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
30 impexp 443 . . . . . . . . 9 (((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
31 vex 3417 . . . . . . . . . . . 12 𝑦 ∈ V
32 ssdomg 8274 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
3331, 32ax-mp 5 . . . . . . . . . . 11 (𝑧𝑦𝑧𝑦)
3433pm4.71i 555 . . . . . . . . . 10 (𝑧𝑦 ↔ (𝑧𝑦𝑧𝑦))
3534imbi1i 341 . . . . . . . . 9 ((𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)) ↔ ((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)))
36 brsdom 8251 . . . . . . . . . . . 12 (𝑧𝑦 ↔ (𝑧𝑦 ∧ ¬ 𝑧𝑦))
3736imbi1i 341 . . . . . . . . . . 11 ((𝑧𝑦𝑧𝑦) ↔ ((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦))
38 impexp 443 . . . . . . . . . . 11 (((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3937, 38bitri 267 . . . . . . . . . 10 ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
4039imbi2i 328 . . . . . . . . 9 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
4130, 35, 403bitr4ri 296 . . . . . . . 8 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
4241pm5.74ri 264 . . . . . . 7 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (¬ 𝑧𝑦𝑧𝑦)))
43 pm4.64 880 . . . . . . 7 ((¬ 𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦))
4442, 43syl6bb 279 . . . . . 6 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4529, 44sylbi 209 . . . . 5 (𝑧 ∈ 𝒫 𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4645ralbiia 3188 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
472, 28, 463anbi123i 1198 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
4847exbii 1947 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
491, 48mpbir 223 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3a 1111  wal 1654   = wceq 1656  wex 1878  wcel 2164  wral 3117  wrex 3118  Vcvv 3414  wss 3798  𝒫 cpw 4380   class class class wbr 4875  cen 8225  cdom 8226  csdm 8227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-groth 9967
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-dom 8230  df-sdom 8231
This theorem is referenced by:  grothomex  9973  grothac  9974
  Copyright terms: Public domain W3C validator