MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Visualization version   GIF version

Theorem axgroth6 10823
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axgroth6
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10819 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
2 biid 261 . . . 4 (𝑥𝑦𝑥𝑦)
3 pweq 4617 . . . . . . . . 9 (𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣)
43sseq1d 4014 . . . . . . . 8 (𝑧 = 𝑣 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑣𝑦))
54cbvralvw 3235 . . . . . . 7 (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑣𝑦 𝒫 𝑣𝑦)
6 ssid 4005 . . . . . . . . . 10 𝒫 𝑧 ⊆ 𝒫 𝑧
7 sseq2 4009 . . . . . . . . . . 11 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
87rspcev 3613 . . . . . . . . . 10 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑦 𝒫 𝑧𝑤)
96, 8mpan2 690 . . . . . . . . 9 (𝒫 𝑧𝑦 → ∃𝑤𝑦 𝒫 𝑧𝑤)
10 pweq 4617 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤)
1110sseq1d 4014 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝒫 𝑣𝑦 ↔ 𝒫 𝑤𝑦))
1211rspccv 3610 . . . . . . . . . . 11 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → 𝒫 𝑤𝑦))
13 pwss 4626 . . . . . . . . . . . 12 (𝒫 𝑤𝑦 ↔ ∀𝑣(𝑣𝑤𝑣𝑦))
14 vpwex 5376 . . . . . . . . . . . . 13 𝒫 𝑧 ∈ V
15 sseq1 4008 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑤 ↔ 𝒫 𝑧𝑤))
16 eleq1 2822 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑦 ↔ 𝒫 𝑧𝑦))
1715, 16imbi12d 345 . . . . . . . . . . . . 13 (𝑣 = 𝒫 𝑧 → ((𝑣𝑤𝑣𝑦) ↔ (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
1814, 17spcv 3596 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑤𝑣𝑦) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
1913, 18sylbi 216 . . . . . . . . . . 11 (𝒫 𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
2012, 19syl6 35 . . . . . . . . . 10 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
2120rexlimdv 3154 . . . . . . . . 9 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∃𝑤𝑦 𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
229, 21impbid2 225 . . . . . . . 8 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝒫 𝑧𝑦 ↔ ∃𝑤𝑦 𝒫 𝑧𝑤))
2322ralbidv 3178 . . . . . . 7 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
245, 23sylbi 216 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2524pm5.32i 576 . . . . 5 ((∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
26 r19.26 3112 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
27 r19.26 3112 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2825, 26, 273bitr4i 303 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤))
29 velpw 4608 . . . . . 6 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
30 impexp 452 . . . . . . . . 9 (((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
31 ssdomg 8996 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
3231elv 3481 . . . . . . . . . . 11 (𝑧𝑦𝑧𝑦)
3332pm4.71i 561 . . . . . . . . . 10 (𝑧𝑦 ↔ (𝑧𝑦𝑧𝑦))
3433imbi1i 350 . . . . . . . . 9 ((𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)) ↔ ((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)))
35 brsdom 8971 . . . . . . . . . . . 12 (𝑧𝑦 ↔ (𝑧𝑦 ∧ ¬ 𝑧𝑦))
3635imbi1i 350 . . . . . . . . . . 11 ((𝑧𝑦𝑧𝑦) ↔ ((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦))
37 impexp 452 . . . . . . . . . . 11 (((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3836, 37bitri 275 . . . . . . . . . 10 ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3938imbi2i 336 . . . . . . . . 9 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
4030, 34, 393bitr4ri 304 . . . . . . . 8 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
4140pm5.74ri 272 . . . . . . 7 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (¬ 𝑧𝑦𝑧𝑦)))
42 pm4.64 848 . . . . . . 7 ((¬ 𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦))
4341, 42bitrdi 287 . . . . . 6 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4429, 43sylbi 216 . . . . 5 (𝑧 ∈ 𝒫 𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4544ralbiia 3092 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
462, 28, 453anbi123i 1156 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
4746exbii 1851 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
481, 47mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  wss 3949  𝒫 cpw 4603   class class class wbr 5149  cen 8936  cdom 8937  csdm 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-groth 10818
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-dom 8941  df-sdom 8942
This theorem is referenced by:  grothomex  10824  grothac  10825
  Copyright terms: Public domain W3C validator