MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxg Structured version   Visualization version   GIF version

Theorem fimaxg 8767
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimaxg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimaxg
StepHypRef Expression
1 fimax2g 8766 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
2 df-ne 3019 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
32imbi1i 352 . . . . . . . 8 ((𝑥𝑦𝑦𝑅𝑥) ↔ (¬ 𝑥 = 𝑦𝑦𝑅𝑥))
4 pm4.64 845 . . . . . . . 8 ((¬ 𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
53, 4bitri 277 . . . . . . 7 ((𝑥𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
6 sotric 5503 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))
76con2bid 357 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
85, 7syl5bb 285 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
98anassrs 470 . . . . 5 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
109ralbidva 3198 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
1110rexbidva 3298 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
12113ad2ant1 1129 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
131, 12mpbird 259 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wcel 2114  wne 3018  wral 3140  wrex 3141  c0 4293   class class class wbr 5068   Or wor 5475  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-fin 8515
This theorem is referenced by:  fisupg  8768  fimaxre  11586  fimaxreOLD  11587
  Copyright terms: Public domain W3C validator