MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxg Structured version   Visualization version   GIF version

Theorem fimaxg 9287
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimaxg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimaxg
StepHypRef Expression
1 fimax2g 9286 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
2 df-ne 2933 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
32imbi1i 349 . . . . . . . 8 ((𝑥𝑦𝑦𝑅𝑥) ↔ (¬ 𝑥 = 𝑦𝑦𝑅𝑥))
4 pm4.64 846 . . . . . . . 8 ((¬ 𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
53, 4bitri 275 . . . . . . 7 ((𝑥𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
6 sotric 5607 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))
76con2bid 354 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
85, 7bitrid 283 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
98anassrs 467 . . . . 5 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
109ralbidva 3167 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
1110rexbidva 3168 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
12113ad2ant1 1130 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
131, 12mpbird 257 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084  wcel 2098  wne 2932  wral 3053  wrex 3062  c0 4315   class class class wbr 5139   Or wor 5578  Fincfn 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-om 7850  df-en 8937  df-fin 8940
This theorem is referenced by:  fisupg  9288  fimaxre  12157
  Copyright terms: Public domain W3C validator