MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxg Structured version   Visualization version   GIF version

Theorem fimaxg 8759
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimaxg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimaxg
StepHypRef Expression
1 fimax2g 8758 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
2 df-ne 3022 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
32imbi1i 351 . . . . . . . 8 ((𝑥𝑦𝑦𝑅𝑥) ↔ (¬ 𝑥 = 𝑦𝑦𝑅𝑥))
4 pm4.64 845 . . . . . . . 8 ((¬ 𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
53, 4bitri 276 . . . . . . 7 ((𝑥𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
6 sotric 5500 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))
76con2bid 356 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
85, 7syl5bb 284 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
98anassrs 468 . . . . 5 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
109ralbidva 3201 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
1110rexbidva 3301 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
12113ad2ant1 1127 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
131, 12mpbird 258 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081  wcel 2107  wne 3021  wral 3143  wrex 3144  c0 4295   class class class wbr 5063   Or wor 5472  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7574  df-1o 8098  df-er 8284  df-en 8504  df-fin 8507
This theorem is referenced by:  fisupg  8760  fimaxre  11578  fimaxreOLD  11579
  Copyright terms: Public domain W3C validator