![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiming | Structured version Visualization version GIF version |
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fiming | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimin2g 9494 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | nesym 2995 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥) | |
3 | 2 | imbi1i 348 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦)) |
4 | pm4.64 845 | . . . . . . . 8 ⊢ ((¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) | |
5 | 3, 4 | bitri 274 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) |
6 | sotric 5615 | . . . . . . . . 9 ⊢ ((𝑅 Or 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) | |
7 | 6 | ancom2s 646 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) |
8 | 7 | con2bid 353 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑦 = 𝑥 ∨ 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
9 | 5, 8 | bitrid 282 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
10 | 9 | anassrs 466 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
11 | 10 | ralbidva 3173 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
12 | 11 | rexbidva 3174 | . . 3 ⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
13 | 12 | 3ad2ant1 1131 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
14 | 1, 13 | mpbird 256 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∧ w3a 1085 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∅c0 4321 class class class wbr 5147 Or wor 5586 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-en 8942 df-fin 8945 |
This theorem is referenced by: fiinfg 9496 fiminre 12165 |
Copyright terms: Public domain | W3C validator |