Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiming | Structured version Visualization version GIF version |
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fiming | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimin2g 8999 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | nesym 3007 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥) | |
3 | 2 | imbi1i 353 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦)) |
4 | pm4.64 846 | . . . . . . . 8 ⊢ ((¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) | |
5 | 3, 4 | bitri 278 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) |
6 | sotric 5473 | . . . . . . . . 9 ⊢ ((𝑅 Or 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) | |
7 | 6 | ancom2s 649 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) |
8 | 7 | con2bid 358 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑦 = 𝑥 ∨ 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
9 | 5, 8 | syl5bb 286 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
10 | 9 | anassrs 471 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
11 | 10 | ralbidva 3125 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
12 | 11 | rexbidva 3220 | . . 3 ⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
13 | 12 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
14 | 1, 13 | mpbird 260 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ∅c0 4227 class class class wbr 5035 Or wor 5445 Fincfn 8532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7585 df-en 8533 df-fin 8536 |
This theorem is referenced by: fiinfg 9001 fiminre 11630 |
Copyright terms: Public domain | W3C validator |