MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiming Structured version   Visualization version   GIF version

Theorem fiming 9379
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiming ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fiming
StepHypRef Expression
1 fimin2g 9378 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
2 nesym 2984 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑦 = 𝑥)
32imbi1i 349 . . . . . . . 8 ((𝑥𝑦𝑥𝑅𝑦) ↔ (¬ 𝑦 = 𝑥𝑥𝑅𝑦))
4 pm4.64 849 . . . . . . . 8 ((¬ 𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑦 = 𝑥𝑥𝑅𝑦))
53, 4bitri 275 . . . . . . 7 ((𝑥𝑦𝑥𝑅𝑦) ↔ (𝑦 = 𝑥𝑥𝑅𝑦))
6 sotric 5549 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥𝑥𝑅𝑦)))
76ancom2s 650 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥𝑥𝑅𝑦)))
87con2bid 354 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦 = 𝑥𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥))
95, 8bitrid 283 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥))
109anassrs 467 . . . . 5 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥))
1110ralbidva 3153 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1211rexbidva 3154 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
13123ad2ant1 1133 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
141, 13mpbird 257 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4278   class class class wbr 5086   Or wor 5518  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-en 8865  df-fin 8868
This theorem is referenced by:  fiinfg  9380  fiminre  12064
  Copyright terms: Public domain W3C validator