![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiming | Structured version Visualization version GIF version |
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fiming | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimin2g 9512 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | nesym 2992 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥) | |
3 | 2 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦)) |
4 | pm4.64 848 | . . . . . . . 8 ⊢ ((¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) | |
5 | 3, 4 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) |
6 | sotric 5612 | . . . . . . . . 9 ⊢ ((𝑅 Or 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) | |
7 | 6 | ancom2s 649 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) |
8 | 7 | con2bid 354 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑦 = 𝑥 ∨ 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
9 | 5, 8 | bitrid 283 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
10 | 9 | anassrs 467 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
11 | 10 | ralbidva 3170 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
12 | 11 | rexbidva 3171 | . . 3 ⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
13 | 12 | 3ad2ant1 1131 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
14 | 1, 13 | mpbird 257 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 ∧ w3a 1085 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ∃wrex 3065 ∅c0 4318 class class class wbr 5142 Or wor 5583 Fincfn 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-en 8956 df-fin 8959 |
This theorem is referenced by: fiinfg 9514 fiminre 12183 |
Copyright terms: Public domain | W3C validator |