Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiming | Structured version Visualization version GIF version |
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fiming | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimin2g 9296 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | nesym 2998 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥) | |
3 | 2 | imbi1i 351 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦)) |
4 | pm4.64 847 | . . . . . . . 8 ⊢ ((¬ 𝑦 = 𝑥 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) | |
5 | 3, 4 | bitri 276 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦)) |
6 | sotric 5538 | . . . . . . . . 9 ⊢ ((𝑅 Or 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) | |
7 | 6 | ancom2s 648 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦𝑅𝑥 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑥𝑅𝑦))) |
8 | 7 | con2bid 356 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑦 = 𝑥 ∨ 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
9 | 5, 8 | bitrid 284 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
10 | 9 | anassrs 469 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ¬ 𝑦𝑅𝑥)) |
11 | 10 | ralbidva 3169 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
12 | 11 | rexbidva 3170 | . . 3 ⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
13 | 12 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
14 | 1, 13 | mpbird 258 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 ∧ w3a 1087 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∅c0 4262 class class class wbr 5081 Or wor 5509 Fincfn 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7616 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-om 7741 df-en 8761 df-fin 8764 |
This theorem is referenced by: fiinfg 9298 fiminre 11964 |
Copyright terms: Public domain | W3C validator |