HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5ati Structured version   Visualization version   GIF version

Theorem dmdbr5ati 29614
Description: Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
dmdbr5ati (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr5ati
StepHypRef Expression
1 sumdmdi.1 . . . . . . 7 𝐴C
2 sumdmdi.2 . . . . . . 7 𝐵C
3 dmdi4 29499 . . . . . . 7 ((𝐴C𝐵C𝑥C ) → (𝐴 𝑀* 𝐵 → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
41, 2, 3mp3an12 1562 . . . . . 6 (𝑥C → (𝐴 𝑀* 𝐵 → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
5 atelch 29536 . . . . . 6 (𝑥 ∈ HAtoms → 𝑥C )
64, 5syl11 33 . . . . 5 (𝐴 𝑀* 𝐵 → (𝑥 ∈ HAtoms → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
76a1dd 50 . . . 4 (𝐴 𝑀* 𝐵 → (𝑥 ∈ HAtoms → (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
87ralrimiv 3114 . . 3 (𝐴 𝑀* 𝐵 → ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
9 chjcom 28698 . . . . . . . . . . . . . . 15 ((𝐵C𝑥C ) → (𝐵 𝑥) = (𝑥 𝐵))
102, 5, 9sylancr 575 . . . . . . . . . . . . . 14 (𝑥 ∈ HAtoms → (𝐵 𝑥) = (𝑥 𝐵))
1110ineq1d 3964 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐵 𝐴)))
121, 2chjcomi 28660 . . . . . . . . . . . . . 14 (𝐴 𝐵) = (𝐵 𝐴)
1312ineq2i 3962 . . . . . . . . . . . . 13 ((𝑥 𝐵) ∩ (𝐴 𝐵)) = ((𝑥 𝐵) ∩ (𝐵 𝐴))
1411, 13syl6eqr 2823 . . . . . . . . . . . 12 (𝑥 ∈ HAtoms → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
1514adantr 466 . . . . . . . . . . 11 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
1612sseq2i 3779 . . . . . . . . . . . . 13 (𝑥 ⊆ (𝐴 𝐵) ↔ 𝑥 ⊆ (𝐵 𝐴))
1716notbii 309 . . . . . . . . . . . 12 𝑥 ⊆ (𝐴 𝐵) ↔ ¬ 𝑥 ⊆ (𝐵 𝐴))
182, 1atabs2i 29594 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ (𝐵 𝐴) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵))
1918imp 393 . . . . . . . . . . . 12 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐵 𝐴)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵)
2017, 19sylan2b 581 . . . . . . . . . . 11 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵)
2115, 20eqtr3d 2807 . . . . . . . . . 10 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = 𝐵)
22 chjcl 28549 . . . . . . . . . . . . . 14 ((𝑥C𝐵C ) → (𝑥 𝐵) ∈ C )
235, 2, 22sylancl 574 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → (𝑥 𝐵) ∈ C )
24 chincl 28691 . . . . . . . . . . . . 13 (((𝑥 𝐵) ∈ C𝐴C ) → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
2523, 1, 24sylancl 574 . . . . . . . . . . . 12 (𝑥 ∈ HAtoms → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
26 chub2 28700 . . . . . . . . . . . 12 ((𝐵C ∧ ((𝑥 𝐵) ∩ 𝐴) ∈ C ) → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
272, 25, 26sylancr 575 . . . . . . . . . . 11 (𝑥 ∈ HAtoms → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
2827adantr 466 . . . . . . . . . 10 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
2921, 28eqsstrd 3788 . . . . . . . . 9 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
3029ex 397 . . . . . . . 8 (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3130biantrud 521 . . . . . . 7 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))))
32 pm4.83 1010 . . . . . . 7 (((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
3331, 32syl6bb 276 . . . . . 6 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3433ralbiia 3128 . . . . 5 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
351, 2sumdmdlem2 29611 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
3634, 35sylbi 207 . . . 4 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (𝐴 + 𝐵) = (𝐴 𝐵))
371, 2sumdmdi 29612 . . . 4 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ 𝐴 𝑀* 𝐵)
3836, 37sylib 208 . . 3 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → 𝐴 𝑀* 𝐵)
398, 38impbii 199 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
402, 1chub2i 28662 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐴 𝐵)
4140biantru 519 . . . . . . . . . . . 12 (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)))
421, 2chjcli 28649 . . . . . . . . . . . . 13 (𝐴 𝐵) ∈ C
43 chlub 28701 . . . . . . . . . . . . 13 ((𝑥C𝐵C ∧ (𝐴 𝐵) ∈ C ) → ((𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
442, 42, 43mp3an23 1564 . . . . . . . . . . . 12 (𝑥C → ((𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
4541, 44syl5bb 272 . . . . . . . . . . 11 (𝑥C → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
46 ssid 3773 . . . . . . . . . . . . 13 (𝑥 𝐵) ⊆ (𝑥 𝐵)
4746biantrur 520 . . . . . . . . . . . 12 ((𝑥 𝐵) ⊆ (𝐴 𝐵) ↔ ((𝑥 𝐵) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
48 ssin 3983 . . . . . . . . . . . 12 (((𝑥 𝐵) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
4947, 48bitri 264 . . . . . . . . . . 11 ((𝑥 𝐵) ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
5045, 49syl6bb 276 . . . . . . . . . 10 (𝑥C → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
5150biimpa 462 . . . . . . . . 9 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
52 inss1 3981 . . . . . . . . 9 ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵)
5351, 52jctil 509 . . . . . . . 8 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
54 eqss 3767 . . . . . . . 8 (((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 𝐵) ↔ (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
5553, 54sylibr 224 . . . . . . 7 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 𝐵))
5655sseq1d 3781 . . . . . 6 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
572, 22mpan2 671 . . . . . . . . . . 11 (𝑥C → (𝑥 𝐵) ∈ C )
5857, 1, 24sylancl 574 . . . . . . . . . 10 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
592, 58, 26sylancr 575 . . . . . . . . 9 (𝑥C𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
6059biantrud 521 . . . . . . . 8 (𝑥C → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
61 chjcl 28549 . . . . . . . . . 10 ((((𝑥 𝐵) ∩ 𝐴) ∈ C𝐵C ) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C )
6258, 2, 61sylancl 574 . . . . . . . . 9 (𝑥C → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C )
63 chlub 28701 . . . . . . . . . 10 ((𝑥C𝐵C ∧ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C ) → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
642, 63mp3an2 1560 . . . . . . . . 9 ((𝑥C ∧ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C ) → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6562, 64mpdan 667 . . . . . . . 8 (𝑥C → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6660, 65bitrd 268 . . . . . . 7 (𝑥C → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6766adantr 466 . . . . . 6 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6856, 67bitr4d 271 . . . . 5 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6968pm5.74da 805 . . . 4 (𝑥C → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
705, 69syl 17 . . 3 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
7170ralbiia 3128 . 2 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
7239, 71bitri 264 1 (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  cin 3722  wss 3723   class class class wbr 4786  (class class class)co 6791   C cch 28119   + cph 28121   chj 28123  HAtomscat 28155   𝑀* cdmd 28157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cc 9457  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216  ax-hilex 28189  ax-hfvadd 28190  ax-hvcom 28191  ax-hvass 28192  ax-hv0cl 28193  ax-hvaddid 28194  ax-hfvmul 28195  ax-hvmulid 28196  ax-hvmulass 28197  ax-hvdistr1 28198  ax-hvdistr2 28199  ax-hvmul0 28200  ax-hfi 28269  ax-his1 28272  ax-his2 28273  ax-his3 28274  ax-his4 28275  ax-hcompl 28392
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-sum 14618  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-cn 21245  df-cnp 21246  df-lm 21247  df-haus 21333  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cfil 23265  df-cau 23266  df-cmet 23267  df-grpo 27680  df-gid 27681  df-ginv 27682  df-gdiv 27683  df-ablo 27732  df-vc 27747  df-nv 27780  df-va 27783  df-ba 27784  df-sm 27785  df-0v 27786  df-vs 27787  df-nmcv 27788  df-ims 27789  df-dip 27889  df-ssp 27910  df-ph 28001  df-cbn 28052  df-hnorm 28158  df-hba 28159  df-hvsub 28161  df-hlim 28162  df-hcau 28163  df-sh 28397  df-ch 28411  df-oc 28442  df-ch0 28443  df-shs 28500  df-span 28501  df-chj 28502  df-chsup 28503  df-pjh 28587  df-cv 29471  df-md 29472  df-dmd 29473  df-at 29530
This theorem is referenced by:  dmdbr6ati  29615  dmdbr7ati  29616
  Copyright terms: Public domain W3C validator