Proof of Theorem dmdbr5ati
| Step | Hyp | Ref
| Expression |
| 1 | | sumdmdi.1 |
. . . . . . 7
⊢ 𝐴 ∈
Cℋ |
| 2 | | sumdmdi.2 |
. . . . . . 7
⊢ 𝐵 ∈
Cℋ |
| 3 | | dmdi4 32293 |
. . . . . . 7
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → (𝐴 𝑀ℋ*
𝐵 → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 4 | 1, 2, 3 | mp3an12 1453 |
. . . . . 6
⊢ (𝑥 ∈
Cℋ → (𝐴 𝑀ℋ*
𝐵 → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 5 | | atelch 32330 |
. . . . . 6
⊢ (𝑥 ∈ HAtoms → 𝑥 ∈
Cℋ ) |
| 6 | 4, 5 | syl11 33 |
. . . . 5
⊢ (𝐴
𝑀ℋ* 𝐵 → (𝑥 ∈ HAtoms → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 7 | 6 | a1dd 50 |
. . . 4
⊢ (𝐴
𝑀ℋ* 𝐵 → (𝑥 ∈ HAtoms → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) |
| 8 | 7 | ralrimiv 3132 |
. . 3
⊢ (𝐴
𝑀ℋ* 𝐵 → ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 9 | | chjcom 31492 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ (𝐵
∨ℋ 𝑥) =
(𝑥 ∨ℋ
𝐵)) |
| 10 | 2, 5, 9 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ HAtoms → (𝐵 ∨ℋ 𝑥) = (𝑥 ∨ℋ 𝐵)) |
| 11 | 10 | ineq1d 4199 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ HAtoms → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐵 ∨ℋ 𝐴))) |
| 12 | 1, 2 | chjcomi 31454 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| 13 | 12 | ineq2i 4197 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
| 14 | 11, 13 | eqtr4di 2789 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ HAtoms → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
| 16 | 12 | sseq2i 3993 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ 𝑥 ⊆ (𝐵 ∨ℋ 𝐴)) |
| 17 | 16 | notbii 320 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ ¬ 𝑥 ⊆ (𝐵 ∨ℋ 𝐴)) |
| 18 | 2, 1 | atabs2i 32388 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ HAtoms → (¬
𝑥 ⊆ (𝐵 ∨ℋ 𝐴) → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵)) |
| 19 | 18 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐵 ∨ℋ 𝐴)) → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵) |
| 20 | 17, 19 | sylan2b 594 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐵 ∨ℋ 𝑥) ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵) |
| 21 | 15, 20 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐵) |
| 22 | | chjcl 31343 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝑥
∨ℋ 𝐵)
∈ Cℋ ) |
| 23 | 5, 2, 22 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ HAtoms → (𝑥 ∨ℋ 𝐵) ∈
Cℋ ) |
| 24 | | chincl 31485 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∨ℋ 𝐵) ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ ((𝑥
∨ℋ 𝐵)
∩ 𝐴) ∈
Cℋ ) |
| 25 | 23, 1, 24 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ HAtoms → ((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∈ Cℋ
) |
| 26 | | chub2 31494 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈
Cℋ ∧ ((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∈ Cℋ )
→ 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 27 | 2, 25, 26 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ HAtoms → 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 29 | 21, 28 | eqsstrd 3998 |
. . . . . . . . 9
⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 30 | 29 | ex 412 |
. . . . . . . 8
⊢ (𝑥 ∈ HAtoms → (¬
𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 31 | 30 | biantrud 531 |
. . . . . . 7
⊢ (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))))) |
| 32 | | pm4.83 1026 |
. . . . . . 7
⊢ (((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) ↔ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 33 | 31, 32 | bitrdi 287 |
. . . . . 6
⊢ (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 34 | 33 | ralbiia 3081 |
. . . . 5
⊢
(∀𝑥 ∈
HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 35 | 1, 2 | sumdmdlem2 32405 |
. . . . 5
⊢
(∀𝑥 ∈
HAtoms ((𝑥
∨ℋ 𝐵)
∩ (𝐴
∨ℋ 𝐵))
⊆ (((𝑥
∨ℋ 𝐵)
∩ 𝐴)
∨ℋ 𝐵)
→ (𝐴
+ℋ 𝐵) =
(𝐴 ∨ℋ
𝐵)) |
| 36 | 34, 35 | sylbi 217 |
. . . 4
⊢
(∀𝑥 ∈
HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) |
| 37 | 1, 2 | sumdmdi 32406 |
. . . 4
⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ*
𝐵) |
| 38 | 36, 37 | sylib 218 |
. . 3
⊢
(∀𝑥 ∈
HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) → 𝐴 𝑀ℋ*
𝐵) |
| 39 | 8, 38 | impbii 209 |
. 2
⊢ (𝐴
𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 40 | 2, 1 | chub2i 31456 |
. . . . . . . . . . . . 13
⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 41 | 40 | biantru 529 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵))) |
| 42 | 1, 2 | chjcli 31443 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∨ℋ 𝐵) ∈
Cℋ |
| 43 | | chlub 31495 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ (𝐴
∨ℋ 𝐵)
∈ Cℋ ) → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 44 | 2, 42, 43 | mp3an23 1455 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
Cℋ → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 45 | 41, 44 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 46 | | ssid 3986 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∨ℋ 𝐵) ⊆ (𝑥 ∨ℋ 𝐵) |
| 47 | 46 | biantrur 530 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) ↔ ((𝑥 ∨ℋ 𝐵) ⊆ (𝑥 ∨ℋ 𝐵) ∧ (𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 48 | | ssin 4219 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∨ℋ 𝐵) ⊆ (𝑥 ∨ℋ 𝐵) ∧ (𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
| 49 | 47, 48 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝑥 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
| 50 | 45, 49 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) |
| 51 | 50 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
| 52 | | inss1 4217 |
. . . . . . . . 9
⊢ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (𝑥 ∨ℋ 𝐵) |
| 53 | 51, 52 | jctil 519 |
. . . . . . . 8
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (𝑥 ∨ℋ 𝐵) ∧ (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) |
| 54 | | eqss 3979 |
. . . . . . . 8
⊢ (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) = (𝑥 ∨ℋ 𝐵) ↔ (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (𝑥 ∨ℋ 𝐵) ∧ (𝑥 ∨ℋ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) |
| 55 | 53, 54 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) = (𝑥 ∨ℋ 𝐵)) |
| 56 | 55 | sseq1d 3995 |
. . . . . 6
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 57 | 2, 22 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ 𝐵) ∈ Cℋ
) |
| 58 | 57, 1, 24 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑥 ∈
Cℋ → ((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∈ Cℋ
) |
| 59 | 2, 58, 26 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑥 ∈
Cℋ → 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
| 60 | 59 | biantrud 531 |
. . . . . . . 8
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ (𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∧ 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) |
| 61 | | chjcl 31343 |
. . . . . . . . . 10
⊢ ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) → (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∈ Cℋ
) |
| 62 | 58, 2, 61 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑥 ∈
Cℋ → (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∈ Cℋ
) |
| 63 | | chlub 31495 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ (((𝑥
∨ℋ 𝐵)
∩ 𝐴)
∨ℋ 𝐵)
∈ Cℋ ) → ((𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∧ 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 64 | 2, 63 | mp3an2 1451 |
. . . . . . . . 9
⊢ ((𝑥 ∈
Cℋ ∧ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∈ Cℋ )
→ ((𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∧ 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 65 | 62, 64 | mpdan 687 |
. . . . . . . 8
⊢ (𝑥 ∈
Cℋ → ((𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∧ 𝐵 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 66 | 60, 65 | bitrd 279 |
. . . . . . 7
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 67 | 66 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ (𝑥 ∨ℋ 𝐵) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 68 | 56, 67 | bitr4d 282 |
. . . . 5
⊢ ((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 69 | 68 | pm5.74da 803 |
. . . 4
⊢ (𝑥 ∈
Cℋ → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) |
| 70 | 5, 69 | syl 17 |
. . 3
⊢ (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) |
| 71 | 70 | ralbiia 3081 |
. 2
⊢
(∀𝑥 ∈
HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
| 72 | 39, 71 | bitri 275 |
1
⊢ (𝐴
𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |