HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5ati Structured version   Visualization version   GIF version

Theorem dmdbr5ati 32349
Description: Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
dmdbr5ati (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr5ati
StepHypRef Expression
1 sumdmdi.1 . . . . . . 7 𝐴C
2 sumdmdi.2 . . . . . . 7 𝐵C
3 dmdi4 32234 . . . . . . 7 ((𝐴C𝐵C𝑥C ) → (𝐴 𝑀* 𝐵 → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
41, 2, 3mp3an12 1453 . . . . . 6 (𝑥C → (𝐴 𝑀* 𝐵 → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
5 atelch 32271 . . . . . 6 (𝑥 ∈ HAtoms → 𝑥C )
64, 5syl11 33 . . . . 5 (𝐴 𝑀* 𝐵 → (𝑥 ∈ HAtoms → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
76a1dd 50 . . . 4 (𝐴 𝑀* 𝐵 → (𝑥 ∈ HAtoms → (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
87ralrimiv 3131 . . 3 (𝐴 𝑀* 𝐵 → ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
9 chjcom 31433 . . . . . . . . . . . . . . 15 ((𝐵C𝑥C ) → (𝐵 𝑥) = (𝑥 𝐵))
102, 5, 9sylancr 587 . . . . . . . . . . . . . 14 (𝑥 ∈ HAtoms → (𝐵 𝑥) = (𝑥 𝐵))
1110ineq1d 4194 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐵 𝐴)))
121, 2chjcomi 31395 . . . . . . . . . . . . . 14 (𝐴 𝐵) = (𝐵 𝐴)
1312ineq2i 4192 . . . . . . . . . . . . 13 ((𝑥 𝐵) ∩ (𝐴 𝐵)) = ((𝑥 𝐵) ∩ (𝐵 𝐴))
1411, 13eqtr4di 2788 . . . . . . . . . . . 12 (𝑥 ∈ HAtoms → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
1514adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
1612sseq2i 3988 . . . . . . . . . . . . 13 (𝑥 ⊆ (𝐴 𝐵) ↔ 𝑥 ⊆ (𝐵 𝐴))
1716notbii 320 . . . . . . . . . . . 12 𝑥 ⊆ (𝐴 𝐵) ↔ ¬ 𝑥 ⊆ (𝐵 𝐴))
182, 1atabs2i 32329 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ (𝐵 𝐴) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵))
1918imp 406 . . . . . . . . . . . 12 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐵 𝐴)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵)
2017, 19sylan2b 594 . . . . . . . . . . 11 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝐵 𝑥) ∩ (𝐵 𝐴)) = 𝐵)
2115, 20eqtr3d 2772 . . . . . . . . . 10 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = 𝐵)
22 chjcl 31284 . . . . . . . . . . . . . 14 ((𝑥C𝐵C ) → (𝑥 𝐵) ∈ C )
235, 2, 22sylancl 586 . . . . . . . . . . . . 13 (𝑥 ∈ HAtoms → (𝑥 𝐵) ∈ C )
24 chincl 31426 . . . . . . . . . . . . 13 (((𝑥 𝐵) ∈ C𝐴C ) → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
2523, 1, 24sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ HAtoms → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
26 chub2 31435 . . . . . . . . . . . 12 ((𝐵C ∧ ((𝑥 𝐵) ∩ 𝐴) ∈ C ) → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
272, 25, 26sylancr 587 . . . . . . . . . . 11 (𝑥 ∈ HAtoms → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
2827adantr 480 . . . . . . . . . 10 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
2921, 28eqsstrd 3993 . . . . . . . . 9 ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
3029ex 412 . . . . . . . 8 (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3130biantrud 531 . . . . . . 7 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))))
32 pm4.83 1026 . . . . . . 7 (((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ∧ (¬ 𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
3331, 32bitrdi 287 . . . . . 6 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3433ralbiia 3080 . . . . 5 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
351, 2sumdmdlem2 32346 . . . . 5 (∀𝑥 ∈ HAtoms ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
3634, 35sylbi 217 . . . 4 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → (𝐴 + 𝐵) = (𝐴 𝐵))
371, 2sumdmdi 32347 . . . 4 ((𝐴 + 𝐵) = (𝐴 𝐵) ↔ 𝐴 𝑀* 𝐵)
3836, 37sylib 218 . . 3 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) → 𝐴 𝑀* 𝐵)
398, 38impbii 209 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
402, 1chub2i 31397 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐴 𝐵)
4140biantru 529 . . . . . . . . . . . 12 (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)))
421, 2chjcli 31384 . . . . . . . . . . . . 13 (𝐴 𝐵) ∈ C
43 chlub 31436 . . . . . . . . . . . . 13 ((𝑥C𝐵C ∧ (𝐴 𝐵) ∈ C ) → ((𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
442, 42, 43mp3an23 1455 . . . . . . . . . . . 12 (𝑥C → ((𝑥 ⊆ (𝐴 𝐵) ∧ 𝐵 ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
4541, 44bitrid 283 . . . . . . . . . . 11 (𝑥C → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
46 ssid 3981 . . . . . . . . . . . . 13 (𝑥 𝐵) ⊆ (𝑥 𝐵)
4746biantrur 530 . . . . . . . . . . . 12 ((𝑥 𝐵) ⊆ (𝐴 𝐵) ↔ ((𝑥 𝐵) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ (𝐴 𝐵)))
48 ssin 4214 . . . . . . . . . . . 12 (((𝑥 𝐵) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ (𝐴 𝐵)) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
4947, 48bitri 275 . . . . . . . . . . 11 ((𝑥 𝐵) ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
5045, 49bitrdi 287 . . . . . . . . . 10 (𝑥C → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
5150biimpa 476 . . . . . . . . 9 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵)))
52 inss1 4212 . . . . . . . . 9 ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵)
5351, 52jctil 519 . . . . . . . 8 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
54 eqss 3974 . . . . . . . 8 (((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 𝐵) ↔ (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐵) ∧ (𝑥 𝐵) ⊆ ((𝑥 𝐵) ∩ (𝐴 𝐵))))
5553, 54sylibr 234 . . . . . . 7 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 𝐵))
5655sseq1d 3990 . . . . . 6 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
572, 22mpan2 691 . . . . . . . . . . 11 (𝑥C → (𝑥 𝐵) ∈ C )
5857, 1, 24sylancl 586 . . . . . . . . . 10 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) ∈ C )
592, 58, 26sylancr 587 . . . . . . . . 9 (𝑥C𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
6059biantrud 531 . . . . . . . 8 (𝑥C → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
61 chjcl 31284 . . . . . . . . . 10 ((((𝑥 𝐵) ∩ 𝐴) ∈ C𝐵C ) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C )
6258, 2, 61sylancl 586 . . . . . . . . 9 (𝑥C → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C )
63 chlub 31436 . . . . . . . . . 10 ((𝑥C𝐵C ∧ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C ) → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
642, 63mp3an2 1451 . . . . . . . . 9 ((𝑥C ∧ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∈ C ) → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6562, 64mpdan 687 . . . . . . . 8 (𝑥C → ((𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ∧ 𝐵 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6660, 65bitrd 279 . . . . . . 7 (𝑥C → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6766adantr 480 . . . . . 6 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 𝐵) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6856, 67bitr4d 282 . . . . 5 ((𝑥C𝑥 ⊆ (𝐴 𝐵)) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
6968pm5.74da 803 . . . 4 (𝑥C → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
705, 69syl 17 . . 3 (𝑥 ∈ HAtoms → ((𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
7170ralbiia 3080 . 2 (∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)) ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
7239, 71bitri 275 1 (𝐴 𝑀* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 𝐵) → 𝑥 ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cin 3925  wss 3926   class class class wbr 5119  (class class class)co 7403   C cch 30856   + cph 30858   chj 30860  HAtomscat 30892   𝑀* cdmd 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-cn 23163  df-cnp 23164  df-lm 23165  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cfil 25205  df-cau 25206  df-cmet 25207  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-shs 31235  df-span 31236  df-chj 31237  df-chsup 31238  df-pjh 31322  df-cv 32206  df-md 32207  df-dmd 32208  df-at 32265
This theorem is referenced by:  dmdbr6ati  32350  dmdbr7ati  32351
  Copyright terms: Public domain W3C validator