Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr3 Structured version   Visualization version   GIF version

Theorem cvlsupr3 39382
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39390, (𝑥𝑦 → ∃𝑧𝐴(𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ), with the simpler 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧) as shown in ishlat3N 39392. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))

Proof of Theorem cvlsupr3
StepHypRef Expression
1 df-ne 2929 . . . 4 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
21imbi1i 349 . . 3 ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
3 oveq1 7353 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))
43biantrur 530 . . 3 ((¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))))
5 pm4.83 1026 . . 3 (((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))) ↔ (𝑃 𝑅) = (𝑄 𝑅))
62, 4, 53bitrri 298 . 2 ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
7 cvlsupr2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cvlsupr2.l . . . . 5 = (le‘𝐾)
9 cvlsupr2.j . . . . 5 = (join‘𝐾)
107, 8, 9cvlsupr2 39381 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
11103expia 1121 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
1211pm5.74d 273 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
136, 12bitrid 283 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  lecple 17165  joincjn 18214  Atomscatm 39301  CvLatclc 39303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360
This theorem is referenced by:  ishlat3N  39392  hlsupr2  39425
  Copyright terms: Public domain W3C validator