Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr3 | Structured version Visualization version GIF version |
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 37366, (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ), with the simpler ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 37368. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cvlsupr2.l | ⊢ ≤ = (le‘𝐾) |
cvlsupr2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
cvlsupr3 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . . 4 ⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) | |
2 | 1 | imbi1i 350 | . . 3 ⊢ ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
3 | oveq1 7282 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
4 | 3 | biantrur 531 | . . 3 ⊢ ((¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
5 | pm4.83 1022 | . . 3 ⊢ (((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
6 | 2, 4, 5 | 3bitrri 298 | . 2 ⊢ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
7 | cvlsupr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cvlsupr2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | cvlsupr2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
10 | 7, 8, 9 | cvlsupr2 37357 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
11 | 10 | 3expia 1120 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
12 | 11 | pm5.74d 272 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
13 | 6, 12 | syl5bb 283 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 CvLatclc 37279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 |
This theorem is referenced by: ishlat3N 37368 hlsupr2 37401 |
Copyright terms: Public domain | W3C validator |