| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr3 | Structured version Visualization version GIF version | ||
| Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39345, (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ), with the simpler ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 39347. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cvlsupr2.l | ⊢ ≤ = (le‘𝐾) |
| cvlsupr2.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| cvlsupr3 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . . 4 ⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) | |
| 2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 3 | oveq1 7394 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
| 4 | 3 | biantrur 530 | . . 3 ⊢ ((¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
| 5 | pm4.83 1026 | . . 3 ⊢ (((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
| 6 | 2, 4, 5 | 3bitrri 298 | . 2 ⊢ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 7 | cvlsupr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | cvlsupr2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 9 | cvlsupr2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 10 | 7, 8, 9 | cvlsupr2 39336 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 11 | 10 | 3expia 1121 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
| 12 | 11 | pm5.74d 273 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
| 13 | 6, 12 | bitrid 283 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 Atomscatm 39256 CvLatclc 39258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 |
| This theorem is referenced by: ishlat3N 39347 hlsupr2 39381 |
| Copyright terms: Public domain | W3C validator |