![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr3 | Structured version Visualization version GIF version |
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39308, (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ), with the simpler ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 39310. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cvlsupr2.l | ⊢ ≤ = (le‘𝐾) |
cvlsupr2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
cvlsupr3 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . . . 4 ⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) | |
2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
3 | oveq1 7455 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
4 | 3 | biantrur 530 | . . 3 ⊢ ((¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
5 | pm4.83 1025 | . . 3 ⊢ (((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
6 | 2, 4, 5 | 3bitrri 298 | . 2 ⊢ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
7 | cvlsupr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cvlsupr2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | cvlsupr2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
10 | 7, 8, 9 | cvlsupr2 39299 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
11 | 10 | 3expia 1121 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
12 | 11 | pm5.74d 273 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
13 | 6, 12 | bitrid 283 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Atomscatm 39219 CvLatclc 39221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 |
This theorem is referenced by: ishlat3N 39310 hlsupr2 39344 |
Copyright terms: Public domain | W3C validator |