Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr3 Structured version   Visualization version   GIF version

Theorem cvlsupr3 38214
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 38222, (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴(𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)) ), with the simpler βˆƒπ‘§ ∈ 𝐴(π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 38224. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atomsβ€˜πΎ)
cvlsupr2.l ≀ = (leβ€˜πΎ)
cvlsupr2.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
cvlsupr3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 β‰  𝑄 β†’ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))))

Proof of Theorem cvlsupr3
StepHypRef Expression
1 df-ne 2942 . . . 4 (𝑃 β‰  𝑄 ↔ Β¬ 𝑃 = 𝑄)
21imbi1i 350 . . 3 ((𝑃 β‰  𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (Β¬ 𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
3 oveq1 7416 . . . 4 (𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
43biantrur 532 . . 3 ((Β¬ 𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ ((𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (Β¬ 𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))))
5 pm4.83 1024 . . 3 (((𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (Β¬ 𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
62, 4, 53bitrri 298 . 2 ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 β‰  𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
7 cvlsupr2.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
8 cvlsupr2.l . . . . 5 ≀ = (leβ€˜πΎ)
9 cvlsupr2.j . . . . 5 ∨ = (joinβ€˜πΎ)
107, 8, 9cvlsupr2 38213 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
11103expia 1122 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (𝑃 β‰  𝑄 β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))))
1211pm5.74d 273 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (𝑃 β‰  𝑄 β†’ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))))
136, 12bitrid 283 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 β‰  𝑄 β†’ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  Atomscatm 38133  CvLatclc 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-lat 18385  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192
This theorem is referenced by:  ishlat3N  38224  hlsupr2  38258
  Copyright terms: Public domain W3C validator