Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr3 Structured version   Visualization version   GIF version

Theorem cvlsupr3 39300
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39308, (𝑥𝑦 → ∃𝑧𝐴(𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ), with the simpler 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧) as shown in ishlat3N 39310. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))

Proof of Theorem cvlsupr3
StepHypRef Expression
1 df-ne 2947 . . . 4 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
21imbi1i 349 . . 3 ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
3 oveq1 7455 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))
43biantrur 530 . . 3 ((¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))))
5 pm4.83 1025 . . 3 (((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))) ↔ (𝑃 𝑅) = (𝑄 𝑅))
62, 4, 53bitrri 298 . 2 ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
7 cvlsupr2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cvlsupr2.l . . . . 5 = (le‘𝐾)
9 cvlsupr2.j . . . . 5 = (join‘𝐾)
107, 8, 9cvlsupr2 39299 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
11103expia 1121 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
1211pm5.74d 273 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
136, 12bitrid 283 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Atomscatm 39219  CvLatclc 39221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278
This theorem is referenced by:  ishlat3N  39310  hlsupr2  39344
  Copyright terms: Public domain W3C validator