Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr3 Structured version   Visualization version   GIF version

Theorem cvlsupr3 39308
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 39316, (𝑥𝑦 → ∃𝑧𝐴(𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ), with the simpler 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧) as shown in ishlat3N 39318. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))

Proof of Theorem cvlsupr3
StepHypRef Expression
1 df-ne 2933 . . . 4 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
21imbi1i 349 . . 3 ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
3 oveq1 7410 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))
43biantrur 530 . . 3 ((¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))))
5 pm4.83 1026 . . 3 (((𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))) ↔ (𝑃 𝑅) = (𝑄 𝑅))
62, 4, 53bitrri 298 . 2 ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)))
7 cvlsupr2.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cvlsupr2.l . . . . 5 = (le‘𝐾)
9 cvlsupr2.j . . . . 5 = (join‘𝐾)
107, 8, 9cvlsupr2 39307 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
11103expia 1121 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
1211pm5.74d 273 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃𝑄 → (𝑃 𝑅) = (𝑄 𝑅)) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
136, 12bitrid 283 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃𝑄 → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  lecple 17276  joincjn 18321  Atomscatm 39227  CvLatclc 39229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-lat 18440  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286
This theorem is referenced by:  ishlat3N  39318  hlsupr2  39352
  Copyright terms: Public domain W3C validator