![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr3 | Structured version Visualization version GIF version |
Description: Two equivalent ways of expressing that π is a superposition of π and π, which can replace the superposition part of ishlat1 38222, (π₯ β π¦ β βπ§ β π΄(π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦)) ), with the simpler βπ§ β π΄(π₯ β¨ π§) = (π¦ β¨ π§) as shown in ishlat3N 38224. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlsupr2.a | β’ π΄ = (AtomsβπΎ) |
cvlsupr2.l | β’ β€ = (leβπΎ) |
cvlsupr2.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
cvlsupr3 | β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π ) = (π β¨ π ) β (π β π β (π β π β§ π β π β§ π β€ (π β¨ π))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . . . 4 β’ (π β π β Β¬ π = π) | |
2 | 1 | imbi1i 350 | . . 3 β’ ((π β π β (π β¨ π ) = (π β¨ π )) β (Β¬ π = π β (π β¨ π ) = (π β¨ π ))) |
3 | oveq1 7416 | . . . 4 β’ (π = π β (π β¨ π ) = (π β¨ π )) | |
4 | 3 | biantrur 532 | . . 3 β’ ((Β¬ π = π β (π β¨ π ) = (π β¨ π )) β ((π = π β (π β¨ π ) = (π β¨ π )) β§ (Β¬ π = π β (π β¨ π ) = (π β¨ π )))) |
5 | pm4.83 1024 | . . 3 β’ (((π = π β (π β¨ π ) = (π β¨ π )) β§ (Β¬ π = π β (π β¨ π ) = (π β¨ π ))) β (π β¨ π ) = (π β¨ π )) | |
6 | 2, 4, 5 | 3bitrri 298 | . 2 β’ ((π β¨ π ) = (π β¨ π ) β (π β π β (π β¨ π ) = (π β¨ π ))) |
7 | cvlsupr2.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
8 | cvlsupr2.l | . . . . 5 β’ β€ = (leβπΎ) | |
9 | cvlsupr2.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
10 | 7, 8, 9 | cvlsupr2 38213 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β ((π β¨ π ) = (π β¨ π ) β (π β π β§ π β π β§ π β€ (π β¨ π)))) |
11 | 10 | 3expia 1122 | . . 3 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π β π β ((π β¨ π ) = (π β¨ π ) β (π β π β§ π β π β§ π β€ (π β¨ π))))) |
12 | 11 | pm5.74d 273 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β π β (π β¨ π ) = (π β¨ π )) β (π β π β (π β π β§ π β π β§ π β€ (π β¨ π))))) |
13 | 6, 12 | bitrid 283 | 1 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π ) = (π β¨ π ) β (π β π β (π β π β§ π β π β§ π β€ (π β¨ π))))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 class class class wbr 5149 βcfv 6544 (class class class)co 7409 lecple 17204 joincjn 18264 Atomscatm 38133 CvLatclc 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-lat 18385 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 |
This theorem is referenced by: ishlat3N 38224 hlsupr2 38258 |
Copyright terms: Public domain | W3C validator |