|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cases2 | Structured version Visualization version GIF version | ||
| Description: Case disjunction according to the value of 𝜑. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by Wolf Lammen, 28-Feb-2022.) | 
| Ref | Expression | 
|---|---|
| cases2 | ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.83 1027 | . 2 ⊢ (((𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) ∧ (¬ 𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) | |
| 2 | dedlema 1046 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | |
| 3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | 
| 4 | dedlemb 1047 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | |
| 5 | 4 | pm5.74i 271 | . . 3 ⊢ ((¬ 𝜑 → 𝜒) ↔ (¬ 𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | 
| 6 | 3, 5 | anbi12i 628 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒)) ↔ ((𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) ∧ (¬ 𝜑 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))) | 
| 7 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 8 | ancom 460 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) ↔ (𝜒 ∧ ¬ 𝜑)) | |
| 9 | 7, 8 | orbi12i 915 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) | 
| 10 | 1, 6, 9 | 3bitr4ri 304 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: dfbi3 1050 dfifp2 1065 ifval 4568 ifpidg 43504 ifpim123g 43513 | 
| Copyright terms: Public domain | W3C validator |