![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version |
Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2251 elrnmpt1 5973 fndmdif 7061 weniso 7373 sbcopeq1a 8072 xpord2pred 8168 snmapen 9076 dmttrcl 9758 cfss 10302 posdif 11753 lesub1 11754 lesub0 11777 possumd 11885 ltdivmul 12140 ledivmul 12141 zlem1lt 12666 zltlem1 12667 negelrp 13065 ioon0 13409 fzn 13576 fzrev2 13624 fz1sbc 13636 elfzp1b 13637 sumsqeq0 14214 fz1isolem 14496 sqrtle 15295 absgt0 15359 isershft 15696 incexc2 15870 dvdssubr 16338 gcdn0gt0 16551 divgcdcoprmex 16699 pcfac 16932 ramval 17041 isrnghm 20457 iunocv 21716 ltbwe 22079 lmbrf 23283 perfcls 23388 ovolscalem1 25561 itg2mulclem 25795 sineq0 26580 efif1olem4 26601 logge0b 26687 loggt0b 26688 logle1b 26689 loglt1b 26690 atanord 26984 rlimcnp2 27023 bposlem7 27348 lgsprme0 27397 rpvmasum2 27570 sltsubsub2bd 28128 posdifsd 28141 sltmuldivwd 28240 trgcgrg 28537 legov3 28620 opphllem6 28774 ebtwntg 29011 wwlksm1edg 29910 clwlkclwwlk2 30031 hial2eq2 31135 adjsym 31861 cnvadj 31920 eigvalcl 31989 mddmd 32329 mdslmd2i 32358 elat2 32368 xdivpnfrp 32899 isorng 33308 ply1dg1rt 33583 unitdivcld 33861 indpreima 34005 ioosconn 35231 poimirlem26 37632 areacirclem1 37694 isat3 39288 ishlat3N 39335 cvrval5 39397 llnexchb2 39851 lhpoc2N 39997 lhprelat3N 40022 lautcnvle 40071 lautcvr 40074 ltrncnvatb 40120 cdlemb3 40588 cdlemg17h 40650 dih0vbN 41264 djhcvat42 41397 dvh4dimat 41420 mapdordlem2 41619 aks6d1c5lem1 42117 f1o2d2 42252 eluzp1 42319 reltsub1 42392 reltsubadd2 42393 sn-ltmul2d 42467 fsuppind 42576 diophun 42760 jm2.19lem4 42980 ordeldifsucon 43248 orddif0suc 43257 uneqsn 44014 xrralrecnnge 45339 limsupre2lem 45679 prprelb 47440 flsqrt5 47518 lincfsuppcl 48258 |
Copyright terms: Public domain | W3C validator |