Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version |
Description: Deduction form of bitr2i 275. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 278 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 383 ifptru 1073 sbequ12a 2248 elrnmpt1 5870 fndmdif 6928 weniso 7234 sbcopeq1a 7899 snmapen 8837 dmttrcl 9488 cfss 10030 posdif 11477 lesub1 11478 lesub0 11501 possumd 11609 ltdivmul 11859 ledivmul 11860 zlem1lt 12381 zltlem1 12382 negelrp 12772 ioon0 13114 fzn 13281 fzrev2 13329 fz1sbc 13341 elfzp1b 13342 sumsqeq0 13905 fz1isolem 14184 sqrtle 14981 absgt0 15045 isershft 15384 incexc2 15559 dvdssubr 16023 gcdn0gt0 16234 divgcdcoprmex 16380 prmdvdssqOLD 16433 pcfac 16609 ramval 16718 iunocv 20895 ltbwe 21254 lmbrf 22420 perfcls 22525 ovolscalem1 24686 itg2mulclem 24920 sineq0 25689 efif1olem4 25710 logge0b 25795 loggt0b 25796 logle1b 25797 loglt1b 25798 atanord 26086 rlimcnp2 26125 bposlem7 26447 lgsprme0 26496 rpvmasum2 26669 trgcgrg 26885 legov3 26968 opphllem6 27122 ebtwntg 27359 wwlksm1edg 28255 clwlkclwwlk2 28376 hial2eq2 29478 adjsym 30204 cnvadj 30263 eigvalcl 30332 mddmd 30672 mdslmd2i 30701 elat2 30711 xdivpnfrp 31216 isorng 31507 unitdivcld 31860 indpreima 32002 ioosconn 33218 xpord2pred 33801 xpord3pred 33807 poimirlem26 35812 areacirclem1 35874 isat3 37328 ishlat3N 37375 cvrval5 37436 llnexchb2 37890 lhpoc2N 38036 lhprelat3N 38061 lautcnvle 38110 lautcvr 38113 ltrncnvatb 38159 cdlemb3 38627 cdlemg17h 38689 dih0vbN 39303 djhcvat42 39436 dvh4dimat 39459 mapdordlem2 39658 fsuppind 40286 reltsub1 40376 reltsubadd2 40377 sn-ltmul2d 40438 diophun 40602 jm2.19lem4 40821 uneqsn 41640 xrralrecnnge 42937 limsupre2lem 43272 prprelb 44979 flsqrt5 45057 isrnghm 45461 lincfsuppcl 45765 |
Copyright terms: Public domain | W3C validator |