| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2254 elrnmpt1 5940 fndmdif 7032 weniso 7347 sbcopeq1a 8048 xpord2pred 8144 snmapen 9052 dmttrcl 9735 cfss 10279 posdif 11730 lesub1 11731 lesub0 11754 possumd 11862 ltdivmul 12117 ledivmul 12118 zlem1lt 12644 zltlem1 12645 negelrp 13042 ioon0 13388 fzn 13557 fzrev2 13605 fz1sbc 13617 elfzp1b 13618 sumsqeq0 14197 fz1isolem 14479 sqrtle 15279 absgt0 15343 isershft 15680 incexc2 15854 dvdssubr 16324 gcdn0gt0 16537 divgcdcoprmex 16685 pcfac 16919 ramval 17028 isrnghm 20401 iunocv 21641 ltbwe 22002 lmbrf 23198 perfcls 23303 ovolscalem1 25466 itg2mulclem 25699 sineq0 26485 efif1olem4 26506 logge0b 26592 loggt0b 26593 logle1b 26594 loglt1b 26595 atanord 26889 rlimcnp2 26928 bposlem7 27253 lgsprme0 27302 rpvmasum2 27475 sltsubsub2bd 28040 posdifsd 28053 sltmuldivwd 28156 pw2gt0divsd 28380 pw2ge0divsd 28381 trgcgrg 28494 legov3 28577 opphllem6 28731 ebtwntg 28961 wwlksm1edg 29863 clwlkclwwlk2 29984 hial2eq2 31088 adjsym 31814 cnvadj 31873 eigvalcl 31942 mddmd 32282 mdslmd2i 32311 elat2 32321 indpreima 32842 xdivpnfrp 32907 isorng 33321 ply1dg1rt 33592 unitdivcld 33932 ioosconn 35269 poimirlem26 37670 areacirclem1 37732 isat3 39325 ishlat3N 39372 cvrval5 39434 llnexchb2 39888 lhpoc2N 40034 lhprelat3N 40059 lautcnvle 40108 lautcvr 40111 ltrncnvatb 40157 cdlemb3 40625 cdlemg17h 40687 dih0vbN 41301 djhcvat42 41434 dvh4dimat 41457 mapdordlem2 41656 aks6d1c5lem1 42149 f1o2d2 42284 eluzp1 42356 reltsub1 42429 reltsubadd2 42430 sn-ltmul2d 42504 fsuppind 42613 diophun 42796 jm2.19lem4 43016 ordeldifsucon 43283 orddif0suc 43292 uneqsn 44049 xrralrecnnge 45417 limsupre2lem 45753 prprelb 47530 flsqrt5 47608 lincfsuppcl 48389 |
| Copyright terms: Public domain | W3C validator |