| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2255 elrnmpt1 5927 fndmdif 7017 weniso 7332 sbcopeq1a 8031 xpord2pred 8127 snmapen 9012 dmttrcl 9681 cfss 10225 posdif 11678 lesub1 11679 lesub0 11702 possumd 11810 ltdivmul 12065 ledivmul 12066 zlem1lt 12592 zltlem1 12593 negelrp 12993 ioon0 13339 fzn 13508 fzrev2 13556 fz1sbc 13568 elfzp1b 13569 sumsqeq0 14151 fz1isolem 14433 sqrtle 15233 absgt0 15298 isershft 15637 incexc2 15811 dvdssubr 16282 gcdn0gt0 16495 divgcdcoprmex 16643 pcfac 16877 ramval 16986 isrnghm 20357 iunocv 21597 ltbwe 21958 lmbrf 23154 perfcls 23259 ovolscalem1 25421 itg2mulclem 25654 sineq0 26440 efif1olem4 26461 logge0b 26547 loggt0b 26548 logle1b 26549 loglt1b 26550 atanord 26844 rlimcnp2 26883 bposlem7 27208 lgsprme0 27257 rpvmasum2 27430 sltsubsub2bd 27995 posdifsd 28008 sltmuldivwd 28111 pw2gt0divsd 28335 pw2ge0divsd 28336 trgcgrg 28449 legov3 28532 opphllem6 28686 ebtwntg 28916 wwlksm1edg 29818 clwlkclwwlk2 29939 hial2eq2 31043 adjsym 31769 cnvadj 31828 eigvalcl 31897 mddmd 32237 mdslmd2i 32266 elat2 32276 indpreima 32795 xdivpnfrp 32860 isorng 33284 ply1dg1rt 33555 unitdivcld 33898 ioosconn 35241 poimirlem26 37647 areacirclem1 37709 isat3 39307 ishlat3N 39354 cvrval5 39416 llnexchb2 39870 lhpoc2N 40016 lhprelat3N 40041 lautcnvle 40090 lautcvr 40093 ltrncnvatb 40139 cdlemb3 40607 cdlemg17h 40669 dih0vbN 41283 djhcvat42 41416 dvh4dimat 41439 mapdordlem2 41638 aks6d1c5lem1 42131 f1o2d2 42228 eluzp1 42302 reltsub1 42381 reltsubadd2 42382 sn-ltmul2d 42468 fsuppind 42585 diophun 42768 jm2.19lem4 42988 ordeldifsucon 43255 orddif0suc 43264 uneqsn 44021 xrralrecnnge 45393 limsupre2lem 45729 modmkpkne 47366 prprelb 47521 flsqrt5 47599 lincfsuppcl 48406 |
| Copyright terms: Public domain | W3C validator |