Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version |
Description: Deduction form of bitr2i 275. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 278 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3bitrrd 305 3bitr2rd 307 pm5.18 382 ifptru 1072 sbequ12a 2250 elrnmpt1 5856 fndmdif 6901 weniso 7205 sbcopeq1a 7863 snmapen 8782 cfss 9952 posdif 11398 lesub1 11399 lesub0 11422 possumd 11530 ltdivmul 11780 ledivmul 11781 zlem1lt 12302 zltlem1 12303 negelrp 12692 ioon0 13034 fzn 13201 fzrev2 13249 fz1sbc 13261 elfzp1b 13262 sumsqeq0 13824 fz1isolem 14103 sqrtle 14900 absgt0 14964 isershft 15303 incexc2 15478 dvdssubr 15942 gcdn0gt0 16153 divgcdcoprmex 16299 prmdvdssqOLD 16352 pcfac 16528 ramval 16637 iunocv 20798 ltbwe 21155 lmbrf 22319 perfcls 22424 ovolscalem1 24582 itg2mulclem 24816 sineq0 25585 efif1olem4 25606 logge0b 25691 loggt0b 25692 logle1b 25693 loglt1b 25694 atanord 25982 rlimcnp2 26021 bposlem7 26343 lgsprme0 26392 rpvmasum2 26565 trgcgrg 26780 legov3 26863 opphllem6 27017 ebtwntg 27253 wwlksm1edg 28147 clwlkclwwlk2 28268 hial2eq2 29370 adjsym 30096 cnvadj 30155 eigvalcl 30224 mddmd 30564 mdslmd2i 30593 elat2 30603 xdivpnfrp 31109 isorng 31400 unitdivcld 31753 indpreima 31893 ioosconn 33109 dmttrcl 33707 xpord2pred 33719 xpord3pred 33725 poimirlem26 35730 areacirclem1 35792 isat3 37248 ishlat3N 37295 cvrval5 37356 llnexchb2 37810 lhpoc2N 37956 lhprelat3N 37981 lautcnvle 38030 lautcvr 38033 ltrncnvatb 38079 cdlemb3 38547 cdlemg17h 38609 dih0vbN 39223 djhcvat42 39356 dvh4dimat 39379 mapdordlem2 39578 fsuppind 40202 reltsub1 40290 reltsubadd2 40291 sn-ltmul2d 40352 diophun 40511 jm2.19lem4 40730 uneqsn 41522 xrralrecnnge 42820 limsupre2lem 43155 prprelb 44856 flsqrt5 44934 isrnghm 45338 lincfsuppcl 45642 |
Copyright terms: Public domain | W3C validator |