| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2255 elrnmpt1 5906 fndmdif 6980 weniso 7295 sbcopeq1a 7991 xpord2pred 8085 snmapen 8970 dmttrcl 9636 cfss 10178 posdif 11631 lesub1 11632 lesub0 11655 possumd 11763 ltdivmul 12018 ledivmul 12019 zlem1lt 12545 zltlem1 12546 negelrp 12946 ioon0 13292 fzn 13461 fzrev2 13509 fz1sbc 13521 elfzp1b 13522 sumsqeq0 14104 fz1isolem 14386 sqrtle 15185 absgt0 15250 isershft 15589 incexc2 15763 dvdssubr 16234 gcdn0gt0 16447 divgcdcoprmex 16595 pcfac 16829 ramval 16938 isrnghm 20344 isorng 20764 iunocv 21606 ltbwe 21967 lmbrf 23163 perfcls 23268 ovolscalem1 25430 itg2mulclem 25663 sineq0 26449 efif1olem4 26470 logge0b 26556 loggt0b 26557 logle1b 26558 loglt1b 26559 atanord 26853 rlimcnp2 26892 bposlem7 27217 lgsprme0 27266 rpvmasum2 27439 sltsubsub2bd 28011 posdifsd 28024 sltmuldivwd 28127 pw2gt0divsd 28355 pw2ge0divsd 28356 trgcgrg 28478 legov3 28561 opphllem6 28715 ebtwntg 28945 wwlksm1edg 29844 clwlkclwwlk2 29965 hial2eq2 31069 adjsym 31795 cnvadj 31854 eigvalcl 31923 mddmd 32263 mdslmd2i 32292 elat2 32302 indpreima 32821 xdivpnfrp 32886 ply1dg1rt 33524 unitdivcld 33867 ioosconn 35219 poimirlem26 37625 areacirclem1 37687 isat3 39285 ishlat3N 39332 cvrval5 39394 llnexchb2 39848 lhpoc2N 39994 lhprelat3N 40019 lautcnvle 40068 lautcvr 40071 ltrncnvatb 40117 cdlemb3 40585 cdlemg17h 40647 dih0vbN 41261 djhcvat42 41394 dvh4dimat 41417 mapdordlem2 41616 aks6d1c5lem1 42109 f1o2d2 42206 eluzp1 42280 reltsub1 42359 reltsubadd2 42360 sn-ltmul2d 42446 fsuppind 42563 diophun 42746 jm2.19lem4 42965 ordeldifsucon 43232 orddif0suc 43241 uneqsn 43998 xrralrecnnge 45370 limsupre2lem 45706 modmkpkne 47346 prprelb 47501 flsqrt5 47579 lincfsuppcl 48386 |
| Copyright terms: Public domain | W3C validator |