| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2259 elrnmpt1 5907 fndmdif 6984 weniso 7297 sbcopeq1a 7990 xpord2pred 8084 snmapen 8970 dmttrcl 9621 cfss 10166 posdif 11620 lesub1 11621 lesub0 11644 possumd 11752 ltdivmul 12007 ledivmul 12008 zlem1lt 12534 zltlem1 12535 negelrp 12935 ioon0 13281 fzn 13450 fzrev2 13498 fz1sbc 13510 elfzp1b 13511 sumsqeq0 14096 fz1isolem 14378 sqrtle 15177 absgt0 15242 isershft 15581 incexc2 15755 dvdssubr 16226 gcdn0gt0 16439 divgcdcoprmex 16587 pcfac 16821 ramval 16930 isrnghm 20369 isorng 20786 iunocv 21628 ltbwe 21989 lmbrf 23185 perfcls 23290 ovolscalem1 25451 itg2mulclem 25684 sineq0 26470 efif1olem4 26491 logge0b 26577 loggt0b 26578 logle1b 26579 loglt1b 26580 atanord 26874 rlimcnp2 26913 bposlem7 27238 lgsprme0 27287 rpvmasum2 27460 sltsubsub2bd 28034 posdifsd 28047 sltmuldivwd 28150 pw2gt0divsd 28378 pw2ge0divsd 28379 pw2sltdiv1d 28385 trgcgrg 28503 legov3 28586 opphllem6 28740 ebtwntg 28971 wwlksm1edg 29870 clwlkclwwlk2 29994 hial2eq2 31098 adjsym 31824 cnvadj 31883 eigvalcl 31952 mddmd 32292 mdslmd2i 32321 elat2 32331 indpreima 32857 xdivpnfrp 32924 ply1dg1rt 33554 unitdivcld 33925 ioosconn 35302 poimirlem26 37696 areacirclem1 37758 isat3 39416 ishlat3N 39463 cvrval5 39524 llnexchb2 39978 lhpoc2N 40124 lhprelat3N 40149 lautcnvle 40198 lautcvr 40201 ltrncnvatb 40247 cdlemb3 40715 cdlemg17h 40777 dih0vbN 41391 djhcvat42 41524 dvh4dimat 41547 mapdordlem2 41746 aks6d1c5lem1 42239 f1o2d2 42341 eluzp1 42415 reltsub1 42494 reltsubadd2 42495 sn-ltmul2d 42581 fsuppind 42698 diophun 42880 jm2.19lem4 43099 ordeldifsucon 43366 orddif0suc 43375 uneqsn 44132 xrralrecnnge 45502 limsupre2lem 45836 modmkpkne 47475 prprelb 47630 flsqrt5 47708 lincfsuppcl 48528 |
| Copyright terms: Public domain | W3C validator |