| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2256 elrnmpt1 5897 fndmdif 6970 weniso 7283 sbcopeq1a 7976 xpord2pred 8070 snmapen 8955 dmttrcl 9606 cfss 10148 posdif 11602 lesub1 11603 lesub0 11626 possumd 11734 ltdivmul 11989 ledivmul 11990 zlem1lt 12516 zltlem1 12517 negelrp 12917 ioon0 13263 fzn 13432 fzrev2 13480 fz1sbc 13492 elfzp1b 13493 sumsqeq0 14078 fz1isolem 14360 sqrtle 15159 absgt0 15224 isershft 15563 incexc2 15737 dvdssubr 16208 gcdn0gt0 16421 divgcdcoprmex 16569 pcfac 16803 ramval 16912 isrnghm 20352 isorng 20769 iunocv 21611 ltbwe 21972 lmbrf 23168 perfcls 23273 ovolscalem1 25434 itg2mulclem 25667 sineq0 26453 efif1olem4 26474 logge0b 26560 loggt0b 26561 logle1b 26562 loglt1b 26563 atanord 26857 rlimcnp2 26896 bposlem7 27221 lgsprme0 27270 rpvmasum2 27443 sltsubsub2bd 28017 posdifsd 28030 sltmuldivwd 28133 pw2gt0divsd 28361 pw2ge0divsd 28362 pw2sltdiv1d 28368 trgcgrg 28486 legov3 28569 opphllem6 28723 ebtwntg 28953 wwlksm1edg 29852 clwlkclwwlk2 29973 hial2eq2 31077 adjsym 31803 cnvadj 31862 eigvalcl 31931 mddmd 32271 mdslmd2i 32300 elat2 32310 indpreima 32836 xdivpnfrp 32903 ply1dg1rt 33533 unitdivcld 33904 ioosconn 35259 poimirlem26 37665 areacirclem1 37727 isat3 39325 ishlat3N 39372 cvrval5 39433 llnexchb2 39887 lhpoc2N 40033 lhprelat3N 40058 lautcnvle 40107 lautcvr 40110 ltrncnvatb 40156 cdlemb3 40624 cdlemg17h 40686 dih0vbN 41300 djhcvat42 41433 dvh4dimat 41456 mapdordlem2 41655 aks6d1c5lem1 42148 f1o2d2 42245 eluzp1 42319 reltsub1 42398 reltsubadd2 42399 sn-ltmul2d 42485 fsuppind 42602 diophun 42785 jm2.19lem4 43004 ordeldifsucon 43271 orddif0suc 43280 uneqsn 44037 xrralrecnnge 45407 limsupre2lem 45741 modmkpkne 47371 prprelb 47526 flsqrt5 47604 lincfsuppcl 48424 |
| Copyright terms: Public domain | W3C validator |