| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version | ||
| Description: Deduction form of bitr2i 276. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 279 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3bitrrd 306 3bitr2rd 308 pm5.18 381 ifptru 1074 sbequ12a 2255 elrnmpt1 5924 fndmdif 7014 weniso 7329 sbcopeq1a 8028 xpord2pred 8124 snmapen 9009 dmttrcl 9674 cfss 10218 posdif 11671 lesub1 11672 lesub0 11695 possumd 11803 ltdivmul 12058 ledivmul 12059 zlem1lt 12585 zltlem1 12586 negelrp 12986 ioon0 13332 fzn 13501 fzrev2 13549 fz1sbc 13561 elfzp1b 13562 sumsqeq0 14144 fz1isolem 14426 sqrtle 15226 absgt0 15291 isershft 15630 incexc2 15804 dvdssubr 16275 gcdn0gt0 16488 divgcdcoprmex 16636 pcfac 16870 ramval 16979 isrnghm 20350 iunocv 21590 ltbwe 21951 lmbrf 23147 perfcls 23252 ovolscalem1 25414 itg2mulclem 25647 sineq0 26433 efif1olem4 26454 logge0b 26540 loggt0b 26541 logle1b 26542 loglt1b 26543 atanord 26837 rlimcnp2 26876 bposlem7 27201 lgsprme0 27250 rpvmasum2 27423 sltsubsub2bd 27988 posdifsd 28001 sltmuldivwd 28104 pw2gt0divsd 28328 pw2ge0divsd 28329 trgcgrg 28442 legov3 28525 opphllem6 28679 ebtwntg 28909 wwlksm1edg 29811 clwlkclwwlk2 29932 hial2eq2 31036 adjsym 31762 cnvadj 31821 eigvalcl 31890 mddmd 32230 mdslmd2i 32259 elat2 32269 indpreima 32788 xdivpnfrp 32853 isorng 33277 ply1dg1rt 33548 unitdivcld 33891 ioosconn 35234 poimirlem26 37640 areacirclem1 37702 isat3 39300 ishlat3N 39347 cvrval5 39409 llnexchb2 39863 lhpoc2N 40009 lhprelat3N 40034 lautcnvle 40083 lautcvr 40086 ltrncnvatb 40132 cdlemb3 40600 cdlemg17h 40662 dih0vbN 41276 djhcvat42 41409 dvh4dimat 41432 mapdordlem2 41631 aks6d1c5lem1 42124 f1o2d2 42221 eluzp1 42295 reltsub1 42374 reltsubadd2 42375 sn-ltmul2d 42461 fsuppind 42578 diophun 42761 jm2.19lem4 42981 ordeldifsucon 43248 orddif0suc 43257 uneqsn 44014 xrralrecnnge 45386 limsupre2lem 45722 modmkpkne 47362 prprelb 47517 flsqrt5 47595 lincfsuppcl 48402 |
| Copyright terms: Public domain | W3C validator |