Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2d | Structured version Visualization version GIF version |
Description: Deduction form of bitr2i 279. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 226 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: 3bitrrd 310 3bitr2rd 312 pm5.18 387 ifptru 1072 sbequ12a 2254 elrnmpt1 5800 fndmdif 6804 weniso 7102 sbcopeq1a 7753 snmapen 8610 cfss 9718 posdif 11164 lesub1 11165 lesub0 11188 possumd 11296 ltdivmul 11546 ledivmul 11547 zlem1lt 12066 zltlem1 12067 negelrp 12456 ioon0 12798 fzn 12965 fzrev2 13013 fz1sbc 13025 elfzp1b 13026 sumsqeq0 13585 fz1isolem 13864 sqrtle 14661 absgt0 14725 isershft 15061 incexc2 15234 dvdssubr 15699 gcdn0gt0 15910 divgcdcoprmex 16055 prmdvdssqOLD 16108 pcfac 16283 ramval 16392 iunocv 20439 ltbwe 20797 lmbrf 21953 perfcls 22058 ovolscalem1 24206 itg2mulclem 24439 sineq0 25208 efif1olem4 25229 logge0b 25314 loggt0b 25315 logle1b 25316 loglt1b 25317 atanord 25605 rlimcnp2 25644 bposlem7 25966 lgsprme0 26015 rpvmasum2 26188 trgcgrg 26401 legov3 26484 opphllem6 26638 ebtwntg 26868 wwlksm1edg 27759 clwlkclwwlk2 27880 hial2eq2 28982 adjsym 29708 cnvadj 29767 eigvalcl 29836 mddmd 30176 mdslmd2i 30205 elat2 30215 xdivpnfrp 30724 isorng 31017 unitdivcld 31365 indpreima 31505 ioosconn 32718 xpord2pred 33340 xpord3pred 33346 poimirlem26 35356 areacirclem1 35418 isat3 36876 ishlat3N 36923 cvrval5 36984 llnexchb2 37438 lhpoc2N 37584 lhprelat3N 37609 lautcnvle 37658 lautcvr 37661 ltrncnvatb 37707 cdlemb3 38175 cdlemg17h 38237 dih0vbN 38851 djhcvat42 38984 dvh4dimat 39007 mapdordlem2 39206 fsuppind 39777 reltsub1 39859 reltsubadd2 39860 sn-ltmul2d 39921 diophun 40080 jm2.19lem4 40299 uneqsn 41092 xrralrecnnge 42386 limsupre2lem 42725 prprelb 44394 flsqrt5 44472 isrnghm 44876 lincfsuppcl 45180 |
Copyright terms: Public domain | W3C validator |