MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bid Structured version   Visualization version   GIF version

Theorem con1bid 359
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
con1bid (𝜑 → (¬ 𝜒𝜓))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (𝜑 → (¬ 𝜓𝜒))
21bicomd 226 . . 3 (𝜑 → (𝜒 ↔ ¬ 𝜓))
32con2bid 358 . 2 (𝜑 → (𝜓 ↔ ¬ 𝜒))
43bicomd 226 1 (𝜑 → (¬ 𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  pm5.18  386  necon1bbid  2990  r19.9rzv  4396  onmindif  6263  iotanul  6318  ondif2  8143  cnpart  14660  sadadd2lem2  15862  isnirred  19534  isreg2  22090  kqcldsat  22446  trufil  22623  itg2cnlem2  24475  issqf  25833  eupth2lem3lem4  28128  pjnorm2  29622  atdmd  30293  atmd2  30295  dfrdg4  33836  dalawlem13  37493  infordmin  40648
  Copyright terms: Public domain W3C validator