| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| 3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.18 381 necon1bbid 2964 r19.9rzv 4463 rexsng 4640 onmindif 6426 iotanul 6489 ondif2 8466 cnpart 15206 sadadd2lem2 16420 isnirred 20329 isreg2 23264 kqcldsat 23620 trufil 23797 itg2cnlem2 25663 issqf 27046 eupth2lem3lem4 30160 pjnorm2 31656 atdmd 32327 atmd2 32329 dfrdg4 35939 dalawlem13 39877 sticksstones1 42134 aks6d1c6lem4 42161 orddif0suc 43257 infordmin 43521 |
| Copyright terms: Public domain | W3C validator |