MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bid Structured version   Visualization version   GIF version

Theorem con1bid 354
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
con1bid (𝜑 → (¬ 𝜒𝜓))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (𝜑 → (¬ 𝜓𝜒))
21bicomd 222 . . 3 (𝜑 → (𝜒 ↔ ¬ 𝜓))
32con2bid 353 . 2 (𝜑 → (𝜓 ↔ ¬ 𝜒))
43bicomd 222 1 (𝜑 → (¬ 𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.18  380  necon1bbid  2978  r19.9rzv  4498  rexsng  4677  onmindif  6455  iotanul  6520  ondif2  8504  cnpart  15191  sadadd2lem2  16395  isnirred  20311  isreg2  23101  kqcldsat  23457  trufil  23634  itg2cnlem2  25512  issqf  26876  eupth2lem3lem4  29751  pjnorm2  31247  atdmd  31918  atmd2  31920  dfrdg4  35227  dalawlem13  39057  sticksstones1  41268  orddif0suc  42320  infordmin  42585
  Copyright terms: Public domain W3C validator