Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 226 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 358 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 226 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: pm5.18 386 necon1bbid 2990 r19.9rzv 4396 onmindif 6263 iotanul 6318 ondif2 8143 cnpart 14660 sadadd2lem2 15862 isnirred 19534 isreg2 22090 kqcldsat 22446 trufil 22623 itg2cnlem2 24475 issqf 25833 eupth2lem3lem4 28128 pjnorm2 29622 atdmd 30293 atmd2 30295 dfrdg4 33836 dalawlem13 37493 infordmin 40648 |
Copyright terms: Public domain | W3C validator |