| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| 3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.18 381 necon1bbid 2967 r19.9rzv 4447 rexsng 4626 onmindif 6400 iotanul 6461 ondif2 8417 cnpart 15147 sadadd2lem2 16361 isnirred 20338 isreg2 23292 kqcldsat 23648 trufil 23825 itg2cnlem2 25690 issqf 27073 eupth2lem3lem4 30211 pjnorm2 31707 atdmd 32378 atmd2 32380 dfrdg4 35995 dalawlem13 39981 sticksstones1 42238 aks6d1c6lem4 42265 orddif0suc 43360 infordmin 43624 |
| Copyright terms: Public domain | W3C validator |