Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 355 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.18 383 necon1bbid 2983 r19.9rzv 4430 rexsng 4610 onmindif 6355 iotanul 6411 ondif2 8332 cnpart 14951 sadadd2lem2 16157 isnirred 19942 isreg2 22528 kqcldsat 22884 trufil 23061 itg2cnlem2 24927 issqf 26285 eupth2lem3lem4 28595 pjnorm2 30089 atdmd 30760 atmd2 30762 dfrdg4 34253 dalawlem13 37897 sticksstones1 40102 infordmin 41139 |
Copyright terms: Public domain | W3C validator |