MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bid Structured version   Visualization version   GIF version

Theorem con1bid 356
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
con1bid (𝜑 → (¬ 𝜒𝜓))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (𝜑 → (¬ 𝜓𝜒))
21bicomd 222 . . 3 (𝜑 → (𝜒 ↔ ¬ 𝜓))
32con2bid 355 . 2 (𝜑 → (𝜓 ↔ ¬ 𝜒))
43bicomd 222 1 (𝜑 → (¬ 𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.18  383  necon1bbid  2983  r19.9rzv  4430  rexsng  4610  onmindif  6355  iotanul  6411  ondif2  8332  cnpart  14951  sadadd2lem2  16157  isnirred  19942  isreg2  22528  kqcldsat  22884  trufil  23061  itg2cnlem2  24927  issqf  26285  eupth2lem3lem4  28595  pjnorm2  30089  atdmd  30760  atmd2  30762  dfrdg4  34253  dalawlem13  37897  sticksstones1  40102  infordmin  41139
  Copyright terms: Public domain W3C validator