![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.18 381 necon1bbid 2986 r19.9rzv 4523 rexsng 4698 onmindif 6487 iotanul 6551 ondif2 8558 cnpart 15289 sadadd2lem2 16496 isnirred 20446 isreg2 23406 kqcldsat 23762 trufil 23939 itg2cnlem2 25817 issqf 27197 eupth2lem3lem4 30263 pjnorm2 31759 atdmd 32430 atmd2 32432 dfrdg4 35915 dalawlem13 39840 sticksstones1 42103 aks6d1c6lem4 42130 orddif0suc 43230 infordmin 43494 |
Copyright terms: Public domain | W3C validator |