MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bid Structured version   Visualization version   GIF version

Theorem con1bid 355
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
con1bid (𝜑 → (¬ 𝜒𝜓))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (𝜑 → (¬ 𝜓𝜒))
21bicomd 222 . . 3 (𝜑 → (𝜒 ↔ ¬ 𝜓))
32con2bid 354 . 2 (𝜑 → (𝜓 ↔ ¬ 𝜒))
43bicomd 222 1 (𝜑 → (¬ 𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.18  382  necon1bbid  2982  r19.9rzv  4427  rexsng  4607  onmindif  6340  iotanul  6396  ondif2  8294  cnpart  14879  sadadd2lem2  16085  isnirred  19857  isreg2  22436  kqcldsat  22792  trufil  22969  itg2cnlem2  24832  issqf  26190  eupth2lem3lem4  28496  pjnorm2  29990  atdmd  30661  atmd2  30663  dfrdg4  34180  dalawlem13  37824  sticksstones1  40030  infordmin  41037
  Copyright terms: Public domain W3C validator