MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bid Structured version   Visualization version   GIF version

Theorem con1bid 355
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
Hypothesis
Ref Expression
con1bid.1 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
con1bid (𝜑 → (¬ 𝜒𝜓))

Proof of Theorem con1bid
StepHypRef Expression
1 con1bid.1 . . . 4 (𝜑 → (¬ 𝜓𝜒))
21bicomd 222 . . 3 (𝜑 → (𝜒 ↔ ¬ 𝜓))
32con2bid 354 . 2 (𝜑 → (𝜓 ↔ ¬ 𝜒))
43bicomd 222 1 (𝜑 → (¬ 𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.18  382  necon1bbid  2980  r19.9rzv  4498  rexsng  4677  onmindif  6453  iotanul  6518  ondif2  8498  cnpart  15183  sadadd2lem2  16387  isnirred  20226  isreg2  22872  kqcldsat  23228  trufil  23405  itg2cnlem2  25271  issqf  26629  eupth2lem3lem4  29473  pjnorm2  30967  atdmd  31638  atmd2  31640  dfrdg4  34911  dalawlem13  38742  sticksstones1  40950  orddif0suc  42003  infordmin  42268
  Copyright terms: Public domain W3C validator