| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| 3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.18 381 necon1bbid 2972 r19.9rzv 4480 rexsng 4657 onmindif 6451 iotanul 6514 ondif2 8519 cnpart 15264 sadadd2lem2 16474 isnirred 20385 isreg2 23320 kqcldsat 23676 trufil 23853 itg2cnlem2 25720 issqf 27103 eupth2lem3lem4 30217 pjnorm2 31713 atdmd 32384 atmd2 32386 dfrdg4 35974 dalawlem13 39907 sticksstones1 42164 aks6d1c6lem4 42191 orddif0suc 43259 infordmin 43523 |
| Copyright terms: Public domain | W3C validator |