Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.18 382 necon1bbid 2982 r19.9rzv 4427 rexsng 4607 onmindif 6340 iotanul 6396 ondif2 8294 cnpart 14879 sadadd2lem2 16085 isnirred 19857 isreg2 22436 kqcldsat 22792 trufil 22969 itg2cnlem2 24832 issqf 26190 eupth2lem3lem4 28496 pjnorm2 29990 atdmd 30661 atmd2 30663 dfrdg4 34180 dalawlem13 37824 sticksstones1 40030 infordmin 41037 |
Copyright terms: Public domain | W3C validator |