| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| 3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.18 381 necon1bbid 2964 r19.9rzv 4451 rexsng 4628 onmindif 6401 iotanul 6462 ondif2 8420 cnpart 15147 sadadd2lem2 16361 isnirred 20305 isreg2 23262 kqcldsat 23618 trufil 23795 itg2cnlem2 25661 issqf 27044 eupth2lem3lem4 30175 pjnorm2 31671 atdmd 32342 atmd2 32344 dfrdg4 35935 dalawlem13 39872 sticksstones1 42129 aks6d1c6lem4 42156 orddif0suc 43251 infordmin 43515 |
| Copyright terms: Public domain | W3C validator |