![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.18 382 necon1bbid 2980 r19.9rzv 4498 rexsng 4677 onmindif 6453 iotanul 6518 ondif2 8498 cnpart 15183 sadadd2lem2 16387 isnirred 20226 isreg2 22872 kqcldsat 23228 trufil 23405 itg2cnlem2 25271 issqf 26629 eupth2lem3lem4 29473 pjnorm2 30967 atdmd 31638 atmd2 31640 dfrdg4 34911 dalawlem13 38742 sticksstones1 40950 orddif0suc 42003 infordmin 42268 |
Copyright terms: Public domain | W3C validator |