| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| 3 | 2 | con2bid 354 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.18 381 necon1bbid 2964 r19.9rzv 4459 rexsng 4636 onmindif 6414 iotanul 6477 ondif2 8443 cnpart 15182 sadadd2lem2 16396 isnirred 20340 isreg2 23297 kqcldsat 23653 trufil 23830 itg2cnlem2 25696 issqf 27079 eupth2lem3lem4 30210 pjnorm2 31706 atdmd 32377 atmd2 32379 dfrdg4 35932 dalawlem13 39870 sticksstones1 42127 aks6d1c6lem4 42154 orddif0suc 43250 infordmin 43514 |
| Copyright terms: Public domain | W3C validator |