![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rusbcALT | Structured version Visualization version GIF version |
Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rusbcALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 385 | . . 3 ⊢ ¬ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
2 | sbcnel12g 4410 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥)) | |
3 | sbc8g 3784 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) | |
4 | df-nel 3045 | . . . . 5 ⊢ (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥) | |
5 | csbvarg 4430 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 = {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
6 | 5, 5 | eleq12d 2825 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
7 | 6 | notbid 317 | . . . . 5 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (¬ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
8 | 4, 7 | bitrid 282 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
9 | 2, 3, 8 | 3bitr3d 308 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
10 | 1, 9 | mto 196 | . 2 ⊢ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V |
11 | df-nel 3045 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V) | |
12 | 10, 11 | mpbir 230 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2104 {cab 2707 ∉ wnel 3044 Vcvv 3472 [wsbc 3776 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-nel 3045 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-nul 4322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |