Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rusbcALT Structured version   Visualization version   GIF version

Theorem rusbcALT 44415
Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rusbcALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem rusbcALT
StepHypRef Expression
1 pm5.19 386 . . 3 ¬ ({𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥} ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥})
2 sbcnel12g 4394 . . . 4 ({𝑥𝑥𝑥} ∈ V → ([{𝑥𝑥𝑥} / 𝑥]𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥))
3 sbc8g 3778 . . . 4 ({𝑥𝑥𝑥} ∈ V → ([{𝑥𝑥𝑥} / 𝑥]𝑥𝑥 ↔ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
4 df-nel 3036 . . . . 5 ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥)
5 csbvarg 4414 . . . . . . 7 ({𝑥𝑥𝑥} ∈ V → {𝑥𝑥𝑥} / 𝑥𝑥 = {𝑥𝑥𝑥})
65, 5eleq12d 2827 . . . . . 6 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
76notbid 318 . . . . 5 ({𝑥𝑥𝑥} ∈ V → (¬ {𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
84, 7bitrid 283 . . . 4 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
92, 3, 83bitr3d 309 . . 3 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥} ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
101, 9mto 197 . 2 ¬ {𝑥𝑥𝑥} ∈ V
11 df-nel 3036 . 2 ({𝑥𝑥𝑥} ∉ V ↔ ¬ {𝑥𝑥𝑥} ∈ V)
1210, 11mpbir 231 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2107  {cab 2712  wnel 3035  Vcvv 3463  [wsbc 3770  csb 3879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-nel 3036  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-nul 4314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator