Proof of Theorem rusbcALT
Step | Hyp | Ref
| Expression |
1 | | pm5.19 388 |
. . 3
⊢ ¬
({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥}) |
2 | | sbcnel12g 4345 |
. . . 4
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥)) |
3 | | sbc8g 3724 |
. . . 4
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
4 | | df-nel 3050 |
. . . . 5
⊢
(⦋{𝑥
∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥) |
5 | | csbvarg 4365 |
. . . . . . 7
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 = {𝑥 ∣ 𝑥 ∉ 𝑥}) |
6 | 5, 5 | eleq12d 2833 |
. . . . . 6
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
7 | 6 | notbid 318 |
. . . . 5
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (¬
⦋{𝑥 ∣
𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
8 | 4, 7 | syl5bb 283 |
. . . 4
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
9 | 2, 3, 8 | 3bitr3d 309 |
. . 3
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
10 | 1, 9 | mto 196 |
. 2
⊢ ¬
{𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V |
11 | | df-nel 3050 |
. 2
⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V) |
12 | 10, 11 | mpbir 230 |
1
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |