Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rusbcALT Structured version   Visualization version   GIF version

Theorem rusbcALT 44458
Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rusbcALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem rusbcALT
StepHypRef Expression
1 pm5.19 386 . . 3 ¬ ({𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥} ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥})
2 sbcnel12g 4414 . . . 4 ({𝑥𝑥𝑥} ∈ V → ([{𝑥𝑥𝑥} / 𝑥]𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥))
3 sbc8g 3796 . . . 4 ({𝑥𝑥𝑥} ∈ V → ([{𝑥𝑥𝑥} / 𝑥]𝑥𝑥 ↔ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
4 df-nel 3047 . . . . 5 ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥)
5 csbvarg 4434 . . . . . . 7 ({𝑥𝑥𝑥} ∈ V → {𝑥𝑥𝑥} / 𝑥𝑥 = {𝑥𝑥𝑥})
65, 5eleq12d 2835 . . . . . 6 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
76notbid 318 . . . . 5 ({𝑥𝑥𝑥} ∈ V → (¬ {𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
84, 7bitrid 283 . . . 4 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} / 𝑥𝑥{𝑥𝑥𝑥} / 𝑥𝑥 ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
92, 3, 83bitr3d 309 . . 3 ({𝑥𝑥𝑥} ∈ V → ({𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥} ↔ ¬ {𝑥𝑥𝑥} ∈ {𝑥𝑥𝑥}))
101, 9mto 197 . 2 ¬ {𝑥𝑥𝑥} ∈ V
11 df-nel 3047 . 2 ({𝑥𝑥𝑥} ∉ V ↔ ¬ {𝑥𝑥𝑥} ∈ V)
1210, 11mpbir 231 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  {cab 2714  wnel 3046  Vcvv 3480  [wsbc 3788  csb 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-nel 3047  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-nul 4334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator