![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rusbcALT | Structured version Visualization version GIF version |
Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rusbcALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.19 388 | . . 3 ⊢ ¬ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
2 | sbcnel12g 4375 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥)) | |
3 | sbc8g 3751 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ([{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥]𝑥 ∉ 𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) | |
4 | df-nel 3047 | . . . . 5 ⊢ (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥) | |
5 | csbvarg 4395 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 = {𝑥 ∣ 𝑥 ∉ 𝑥}) | |
6 | 5, 5 | eleq12d 2828 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
7 | 6 | notbid 318 | . . . . 5 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (¬ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∈ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
8 | 4, 7 | bitrid 283 | . . . 4 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → (⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ∉ ⦋{𝑥 ∣ 𝑥 ∉ 𝑥} / 𝑥⦌𝑥 ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
9 | 2, 3, 8 | 3bitr3d 309 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥} ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ {𝑥 ∣ 𝑥 ∉ 𝑥})) |
10 | 1, 9 | mto 196 | . 2 ⊢ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V |
11 | df-nel 3047 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ ¬ {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V) | |
12 | 10, 11 | mpbir 230 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2107 {cab 2710 ∉ wnel 3046 Vcvv 3447 [wsbc 3743 ⦋csb 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-nel 3047 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-nul 4287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |